難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試卷帶答案詳解(達(dá)標(biāo)題)_第1頁
難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試卷帶答案詳解(達(dá)標(biāo)題)_第2頁
難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試卷帶答案詳解(達(dá)標(biāo)題)_第3頁
難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試卷帶答案詳解(達(dá)標(biāo)題)_第4頁
難點(diǎn)詳解京改版數(shù)學(xué)9年級上冊期末試卷帶答案詳解(達(dá)標(biāo)題)_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、將拋物線C1:y=(x-3)2+2向左平移3個單位長度,得到拋物線C2,拋物線C2與拋物線C3關(guān)于x軸對稱,則拋物線C3的解析式為().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-22、如圖,撬釘子的工具是一個杠桿,動力臂,阻力臂,如果動力F的用力方向始終保持豎直向下,當(dāng)阻力不變時,則杠桿向下運(yùn)動時的動力變化情況是(

)A.越來越小 B.不變 C.越來越大 D.無法確定3、當(dāng)0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,44、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o5、若為銳角,,則等于(

)A. B. C. D.6、拋物線的對稱軸為直線.若關(guān)于的一元二次方程(為實數(shù))在的范圍內(nèi)有實數(shù)根,則的取值范圍是()A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、用一個2倍的放大鏡照一個△ABC,下列命題中不正確的是(

)A.△ABC放大后角是原來的2倍 B.△ABC放大后周長是原來的2倍C.△ABC放大后面積是原來的2倍 D.以上的命題都不對2、如圖,在⊙O中,AB為直徑,BC為切線,弦ADOC,直線CD交BA的延長線于點(diǎn)E,連接BD.下列結(jié)論正確的是(

)A.CD是⊙O的切線 B.CO⊥DBC.△EDA∽△EBD D.3、運(yùn)動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(

)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m4、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+175、如圖,AB是圓O的直徑,點(diǎn)G是圓上任意一點(diǎn),點(diǎn)C是的中點(diǎn),,垂足為點(diǎn)E,連接GA,GB,GC,GD,BC,GB與CD交于點(diǎn)F,則下列表述正確的是(

)A. B.C. D.6、如圖,在△ABC中,點(diǎn)D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.7、如圖所示,AB是⊙O的直徑,D,E是半圓上任意兩點(diǎn),連接AD,DE,AE與BD相交于點(diǎn)C,要使與相似,可以添加一個條件下列添加的條件中正確的是(

)A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD?CD第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、某圓的周長是12.56米,那么它的半徑是______________,面積是__________.2、如圖,點(diǎn)A是反比例函數(shù)y=(x>0)圖象上的一點(diǎn),AB垂直于x軸,垂足為B,△OAB的面積為6.若點(diǎn)P(a,4)也在此函數(shù)的圖象上,則a=_____.3、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.4、二次函數(shù)的最大值是__________.5、如圖1是臺灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點(diǎn),DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時,最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN交于點(diǎn)F,G.若△CDE是等腰直角三角形,且點(diǎn)C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.6、我們用符號表示不大于的最大整數(shù).例如:,.那么:(1)當(dāng)時,的取值范圍是______;(2)當(dāng)時,函數(shù)的圖象始終在函數(shù)的圖象下方.則實數(shù)的范圍是______.7、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D在拋物線上,且CD∥AB.AD與y軸相交于點(diǎn)E,過點(diǎn)E的直線PQ平行于x軸,與拋物線相交于P,Q兩點(diǎn),則線段PQ的長為_____.四、解答題(6小題,每小題10分,共計60分)1、某賓館共有80間客房.賓館負(fù)責(zé)人根據(jù)經(jīng)驗作出預(yù)測:今年5月份,每天的房間空閑數(shù)y(間)與定價x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運(yùn)營成本為4000元,有客人入住的房間,賓館每天每間另外還需支出36元的各種費(fèi)用,賓館想要獲得最大利潤,同時也想讓客人得到實惠.(1)求入住房間z(間)與定價x(元/間)之間關(guān)系式;(2)應(yīng)將房間定價確定為多少元時,獲得利潤最大?求出最大利潤?2、在矩形中,于點(diǎn),點(diǎn)是邊上一點(diǎn).(1)若平分,交于點(diǎn),PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.3、頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過點(diǎn)C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個動點(diǎn),過點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點(diǎn)P為x軸的正半軸上一個動點(diǎn),過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對應(yīng)點(diǎn)F恰好落在y軸上時,請直接寫出點(diǎn)P的坐標(biāo).4、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點(diǎn)O在射線AC上(點(diǎn)O不與點(diǎn)A重合),垂足為D,以點(diǎn)O為圓心,分別交射線AC于E、F兩點(diǎn),設(shè)OD=x.(1)如圖1,當(dāng)點(diǎn)O為AC邊的中點(diǎn)時,求x的值;(2)如圖2,當(dāng)點(diǎn)O與點(diǎn)C重合時,連接DF;求弦DF的長;(3)當(dāng)半圓O與BC無交點(diǎn)時,直接寫出x的取值范圍.5、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?6、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當(dāng)BD的長是多少時,圖中的兩個直角三角形相似?-參考答案-一、單選題1、D【解析】【分析】根據(jù)拋物線C1的解析式得到頂點(diǎn)坐標(biāo),利用二次函數(shù)平移的規(guī)律:左加右減,上加下減,并根據(jù)平移前后二次項的系數(shù)不變可得拋物線C2的頂點(diǎn)坐標(biāo),再根據(jù)關(guān)于x軸對稱的兩條拋物線的頂點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)可得到拋物線C3所對應(yīng)的解析式.【詳解】解:∵拋物線C1:y=(x-3)2+2,其頂點(diǎn)坐標(biāo)為(3,2)∵向左平移3個單位長度,得到拋物線C2∴拋物線C2的頂點(diǎn)坐標(biāo)為(0,2)∵拋物線C2與拋物線C3關(guān)于x軸對稱∴拋物線C3的橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)∴拋物線C3的頂點(diǎn)坐標(biāo)為(0,-2),二次項系數(shù)為-1∴拋物線C3的解析式為y=-x2-2故選:D.【考點(diǎn)】本題主要考查了二次函數(shù)圖象的平移、對稱問題,熟練掌握平移的規(guī)律以及關(guān)于x軸對稱的兩條拋物線的頂點(diǎn)的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)是解題的關(guān)鍵.2、A【解析】【分析】根據(jù)杠桿原理及的值隨著的減小而增大結(jié)合反比例函數(shù)的增減性即可求得答案.【詳解】解:∵動力×動力臂=阻力×阻力臂,∴當(dāng)阻力及阻力臂不變時,動力×動力臂為定值,且定值>0,∴動力隨著動力臂的增大而減小,∵杠桿向下運(yùn)動時的度數(shù)越來越小,此時的值越來越大,又∵動力臂,∴此時動力臂也越來越大,∴此時的動力越來越小,故選:A.【考點(diǎn)】本題主要考查了杠桿原理以及銳角三角函數(shù)和反比例函數(shù)的增減性,熟練掌握相關(guān)知識是解決本題的關(guān)鍵.3、A【解析】【分析】利用配方法把原方程化為頂點(diǎn)式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當(dāng)x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點(diǎn)】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點(diǎn)式是解答本題的關(guān)鍵.4、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關(guān)知識點(diǎn)是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)tan45°=1求出即可.【詳解】∵∠A為銳角,tanA=1,∴∠A=45°.故選B.【考點(diǎn)】本題考查了特殊角的三角函數(shù)值,主要考查學(xué)生的記憶能力和計算能力.6、A【解析】【分析】根據(jù)給出的對稱軸求出函數(shù)解析式為,將一元二次方程的實數(shù)根可以看做與函數(shù)的有交點(diǎn),再由的范圍確定的取值范圍即可求解;【詳解】∵的對稱軸為直線,∴,∴,∴一元二次方程的實數(shù)根可以看做與函數(shù)的有交點(diǎn),∵方程在的范圍內(nèi)有實數(shù)根,當(dāng)時,,當(dāng)時,,函數(shù)在時有最小值2,∴,故選A.【考點(diǎn)】本題考查二次函數(shù)的圖象及性質(zhì);能夠?qū)⒎匠痰膶崝?shù)根問題轉(zhuǎn)化為二次函數(shù)與直線的交點(diǎn)問題,借助數(shù)形結(jié)合解題是關(guān)鍵.二、多選題1、ACD【解析】【分析】用2倍的放大鏡放大一個△ABC,得到一個與原三角形相似的三角形;根據(jù)相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方,周長比等于相似比.可知:放大后三角形的面積是原來的4倍,邊長和周長是原來的2倍,而內(nèi)角的度數(shù)不會改變.【詳解】解:A、錯誤,△ABC放大后角不變,故該選項符合題意;B、正確,△ABC放大后周長是原來的2倍,故該選項不符合題意;C、錯誤,△ABC放大后面積是相似比的平方,放大后面積是原來的4倍,故該選項符合題意;D、錯誤,故該選項符合題意.故選:ACD.【考點(diǎn)】本題考查對相似三角形性質(zhì)的理解.(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比.2、ABC【解析】【分析】由切線的性質(zhì)得∠CBO=90°,首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;根據(jù)全等三角形的性質(zhì)得到CD=CB,根據(jù)線段垂直平分線的判定定理得到即CO⊥DB;根據(jù)余角的性質(zhì)得到∠ADE=∠BDO,等量代換得到∠EDA=∠DBE,根據(jù)相似三角形的判定定理得到△EDA∽△EBD;根據(jù)相似三角形的性質(zhì)得到,于是得到ED?BC=BO?BE.【詳解】解:A.證明:連接DO.∵AB為⊙O的直徑,BC為⊙O的切線,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵點(diǎn)D在⊙O上,∴CD是⊙O的切線;故選項正確,符合題意;B.證明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故選項正確,符合題意;C.證明:∵AB為⊙O的直徑,DC為⊙O的切線,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故選項正確,符合題意;D.證明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED?BC=BO?BE,故選項錯誤,不符合題意.故選:ABC.【考點(diǎn)】本題主要考查了切線的判定、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì),注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用是解答此題的關(guān)鍵.3、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點(diǎn)】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考常考題型.4、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.5、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應(yīng)相等,∴不能證得,故B不正確;∵點(diǎn)C是的中點(diǎn),∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點(diǎn)C是的中點(diǎn),∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點(diǎn)】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.6、ABD【解析】【分析】根據(jù)三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點(diǎn)】此題考查了三角形相似的判斷方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.7、ABD【解析】【分析】根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對A選項判斷;根據(jù)圓周角定理和有兩組角對應(yīng)相等的兩個三角形相似可對B選項判斷;根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對C、D選項判斷.【詳解】解:A、,,,故A選項的添加條件正確;B、,,而,,,故B選項的添加條件正確;C、∵AD·AB=CD·BD,∴AD∶BD=CD∶AB,又∵∠ADC≠∠B,∴無法證明與相似,故C選項的添加條件不正確;D、∵,,又,,故D選項的添加條件正確.故選:ABD.【考點(diǎn)】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.也考查了圓周角定理.三、填空題1、

2米

12.56平方米【解析】【分析】根據(jù)周長公式轉(zhuǎn)化為,將C=12.56代入進(jìn)行計算得到半徑,繼續(xù)利用面積公式,代入半徑的值求出面積的結(jié)果.【詳解】因為C=2πr,所以==2,所以r=2(米),因為S=πr2=3.14×22=12.56(平方米).故答案為:2米

12.56平方米.【考點(diǎn)】考查圓的面積和周長與半徑之間的關(guān)系,學(xué)生必須熟練掌握圓的面積和周長的求解公式,選擇相應(yīng)的公式進(jìn)行計算,利用公式是解題的關(guān)鍵.2、3【解析】【分析】根據(jù)反比例函數(shù)的幾何意義,可得,從而得到,再將點(diǎn)P(a,4)代入解析式,即可求解.【詳解】解:∵點(diǎn)A是反比例函數(shù)y=(x>0)圖象上的一點(diǎn),AB垂直于x軸,∴,∵△OAB的面積為6.∴,即,∴反比例函數(shù)的解析式為,∵點(diǎn)P(a,4)也在此函數(shù)的圖象上,∴,解得:.故答案為:3【考點(diǎn)】本題主要考查了反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),熟練掌握反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.3、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點(diǎn)即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點(diǎn),∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點(diǎn)】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點(diǎn)性質(zhì)進(jìn)行角度求解,熟練掌握,即可解題.4、8【解析】【分析】二次函數(shù)的頂點(diǎn)式在x=h時有最值,a>0時有最小值,a<0時有最大值,題中函數(shù),故其在時有最大值.【詳解】解:∵,∴有最大值,當(dāng)時,有最大值8.故答案為8.【考點(diǎn)】本題考查了二次函數(shù)頂點(diǎn)式求最值,熟練掌握二次函數(shù)的表達(dá)式及最值的確定方法是解題的關(guān)鍵.5、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因為△CDE是等腰直角三角形,DE=2,得點(diǎn)E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點(diǎn)E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時,即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點(diǎn)】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.6、

或【解析】【分析】(1)首先利用的整數(shù)定義根據(jù)不等式確定其整數(shù)取值范圍,繼而利用取整函數(shù)定義精確求解x取值范圍.(2)本題可根據(jù)題意構(gòu)造新函數(shù),采取自變量分類討論的方式判別新函數(shù)的正負(fù),繼而根據(jù)函數(shù)性質(zhì)反求參數(shù).【詳解】(1)因為表示整數(shù),故當(dāng)時,的可能取值為0,1,2.當(dāng)取0時,;當(dāng)取1時,;當(dāng)=2時,.故綜上當(dāng)時,x的取值范圍為:.(2)令,,,由題意可知:,.①當(dāng)時,=,,在該區(qū)間函數(shù)單調(diào)遞增,故當(dāng)時,,得.②當(dāng)時,=0,不符合題意.③當(dāng)時,=1,,在該區(qū)間內(nèi)函數(shù)單調(diào)遞減,故當(dāng)取值趨近于2時,,得,當(dāng)時,,因為,故,符合題意.故綜上:或.【考點(diǎn)】本題考查函數(shù)的新定義取整函數(shù),需要有較強(qiáng)的題意理解能力,分類討論方法在此類型題目極為常見,根據(jù)不同區(qū)間函數(shù)單調(diào)性求解參數(shù)為常規(guī)題型,需要利用轉(zhuǎn)化思想將非常規(guī)題型轉(zhuǎn)化為常見題型.7、2【解析】【分析】利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A,B,C,D的坐標(biāo),由點(diǎn)A,D的坐標(biāo),利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)E的坐標(biāo),再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)P,Q的坐標(biāo),進(jìn)而可求出線段PQ的長.【詳解】解:當(dāng)y=0時,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點(diǎn)A的坐標(biāo)為(﹣2,0);當(dāng)x=0時,y=﹣x2+x+2=2,∴點(diǎn)C的坐標(biāo)為(0,2);當(dāng)y=2時,﹣x2+x+2=2,解得:x1=0,x2=2,∴點(diǎn)D的坐標(biāo)為(2,2).設(shè)直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當(dāng)x=0時,y=x+1=1,∴點(diǎn)E的坐標(biāo)為(0,1).當(dāng)y=1時,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點(diǎn)P的坐標(biāo)為(1﹣,1),點(diǎn)Q的坐標(biāo)為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)P,Q的坐標(biāo)是解題的關(guān)鍵.四、解答題1、(1)z=﹣x+122(x≥168);(2)應(yīng)將房間定價確定為260元時,獲得利潤最大,最大利潤為8767元【解析】【分析】(1)入住房間z(間)等于80減去每天的房間空閑數(shù),列式并化簡即可;(2)設(shè)利潤為w元,由題意得w關(guān)于x的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)的對稱性及問題實際可得答案.【詳解】解:(1)由題意得:z=80﹣(x﹣42)=﹣x+122,∴入住房間z(間)與定價x(元/間)之間關(guān)系式為z=﹣x+122(x≥168);(2)設(shè)利潤為w元,由題意得:w=(﹣x+122)x﹣36(﹣x+122)﹣4000=﹣x2+131x﹣8392,當(dāng)x=﹣=262時,w最大,此時z=56.5非整數(shù),不合題意,∴x=260或264時,w最大,∵讓客人得到實惠,∴x=260,∴w最大==﹣×2602+131×260﹣8392=8767,∴應(yīng)將房間定價確定為260元時,獲得利潤最大,最大利潤為8767元.【考點(diǎn)】本題考查了二次函數(shù)在實際問題中的應(yīng)用,理清題中的數(shù)量關(guān)系、熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.2、(1)見解析;(2)見解析【解析】【分析】(1)想辦法證明AG=PF,AG∥PF,推出四邊形AGFP是平行四邊形,再證明PA=PF即可解決問題.(2)證明△AEP∽△DEC,可得,由此即可解決問題.【詳解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四邊形是平行四邊形,∴四邊形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),菱形的判定,相似三角形的性質(zhì)與判定,矩形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.3、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時,S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點(diǎn)E代入直線解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式,代入點(diǎn)B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點(diǎn)E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點(diǎn)B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點(diǎn)M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時,S有最大值,最大值為.(3)存在,如圖所示,設(shè)點(diǎn)P的坐標(biāo)為(t,0),則點(diǎn)G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點(diǎn)為點(diǎn)F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時,解得t1=0(舍),t2=4,此時點(diǎn)P(4,0).當(dāng)t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點(diǎn)P(,0).綜上,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【考點(diǎn)】此題考查了待定系數(shù)法求函數(shù)解析式,點(diǎn)坐標(biāo)轉(zhuǎn)換為線段長度,幾何圖形與二次函數(shù)結(jié)合的問題,最后一問推出CG=HG為解題關(guān)鍵.4、(1);(2);(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論