難點(diǎn)解析湖北省洪湖市中考數(shù)學(xué)真題分類(勾股定理)匯編同步練習(xí)練習(xí)題(含答案詳解)_第1頁
難點(diǎn)解析湖北省洪湖市中考數(shù)學(xué)真題分類(勾股定理)匯編同步練習(xí)練習(xí)題(含答案詳解)_第2頁
難點(diǎn)解析湖北省洪湖市中考數(shù)學(xué)真題分類(勾股定理)匯編同步練習(xí)練習(xí)題(含答案詳解)_第3頁
難點(diǎn)解析湖北省洪湖市中考數(shù)學(xué)真題分類(勾股定理)匯編同步練習(xí)練習(xí)題(含答案詳解)_第4頁
難點(diǎn)解析湖北省洪湖市中考數(shù)學(xué)真題分類(勾股定理)匯編同步練習(xí)練習(xí)題(含答案詳解)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省洪湖市中考數(shù)學(xué)真題分類(勾股定理)匯編同步練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、在△ABC中,,那么△ABC是(

)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形2、已知直角三角形紙片的兩條直角邊長分別為m和n(m<n),過銳角頂點(diǎn)把該紙片剪成兩個三角形,若這兩個三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=03、在自習(xí)課上,小芳同學(xué)將一張長方形紙片ABCD按如圖所示的方式折疊起來,她發(fā)現(xiàn)D、B兩點(diǎn)均落在了對角線AC的中點(diǎn)O處,且四邊形AECF是菱形.若AB=3cm,則陰影部分的面積為()A.1cm2 B.2cm2 C.cm2 D.cm24、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點(diǎn)B落在直角邊AC的延長線上的點(diǎn)E處,折痕為AD,則BD的長為(

)A.2 B. C. D.45、如圖,中,,將折疊,使點(diǎn)C與的中點(diǎn)D重合,折痕交于點(diǎn)M,交于點(diǎn)N,則線段的長為(

).A. B. C.3 D.6、如圖,正方體盒子的棱長為2,M為BC的中點(diǎn),則一只螞蟻從A點(diǎn)沿盒子的表面爬行到M點(diǎn)的最短距離為(

)A. B.C. D.7、我國古代數(shù)學(xué)名著《算法統(tǒng)宗》有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭蹴.良工高士素好奇,算出索長有幾?”此問題可理解為:“如圖,有一架秋千,當(dāng)它靜止時,踏板離地距離的長為尺,將它向前水平推送尺時,即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問繩索有多長?”,設(shè)秋千的繩索長為尺,根據(jù)題意可列方程為(

)A. B.C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,矩形ABCD中,AD=6,AB=8.點(diǎn)E為邊DC上的一個動點(diǎn),△AD'E與△ADE關(guān)于直線AE對稱,當(dāng)△CD'E為直角三角形時,DE的長為__.2、如圖1,鄰邊長為2和6的矩形分割成①,②,③,④四塊后,拼接成如圖2不重疊、無縫隙的正方形,則圖2中的值為___________,圖1中的長為_______.3、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為____.4、《九章算術(shù)》中記載著這樣一個問題:已知甲、乙兩人同時從同一地點(diǎn)出發(fā),甲的速度為7步/分,乙的速度為3步/分,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇,那么相遇時,甲、乙各走了多遠(yuǎn)?解:如圖,設(shè)甲乙兩人出發(fā)后x分鐘相遇.根據(jù)勾股定理可列得方程為______.5、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個正方形.若四個陰影部分面積分別為,,,,則的值為______,的值為______.6、如圖,在的網(wǎng)格中每個小正方形的邊長都為1,的頂點(diǎn)、、都在格點(diǎn)上,點(diǎn)為邊的中點(diǎn),則線段的長為________.7、小聰準(zhǔn)備測量河水的深度,他把一根竹竿插到離岸邊遠(yuǎn)的水底,竹竿高出水面,把竹竿的頂端拉向岸邊,竹竿頂和岸邊的水面剛好相齊,則河水的深度為__________.8、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來,蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米三、解答題(7小題,每小題10分,共計70分)1、如圖所示,△ABC的兩條高AD,BE相交于點(diǎn)F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長.2、如圖②,它可以看作是由邊長為a、b、c的兩個直角三角形(如圖①C為斜邊)拼成的,其中A、C、D三點(diǎn)在同一條直線上,(1)請從面積出發(fā)寫出一個表示a、b、c的關(guān)系的等式;(要求寫出過程)(2)如圖③④⑤,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個圖形中面積關(guān)系滿足的有_______個.(3)如圖⑥,直角三角形的兩直角邊長分別為3,5,分別以直角三角形的三邊為直徑作半圓,則圖中陰影部分的面積為_______.3、如圖,將一個長方形紙片ABCD沿對角線AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,已知AB=4,BC=2,求折疊后重合部分的面積.4、如圖所示,在中,,,,為邊上的中點(diǎn).(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.5、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.6、如圖是三個全等的直角三角形紙片,且,按如圖的三種方法分別將其折疊,使折痕(圖中虛線)過其中的一個頂點(diǎn),且使該頂點(diǎn)所在角的兩邊重合,記折疊后不重疊部分面積分別為.(1)若,求的值.(2)若,求①單個直角三角形紙片的面積是多少?②此時的值是多少?7、如圖所示的一塊地,,,,,,求這塊地的面積.-參考答案-一、單選題1、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點(diǎn)】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.2、C【解析】【分析】如圖,根據(jù)等腰三角形的性質(zhì)和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.3、D【解析】【分析】由菱形的性質(zhì)得到∠FCO=∠ECO,進(jìn)而證明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面積為2,最后由陰影部分的面積=S菱形AECF解題.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AE?BC=2.∴陰影部分的面積=S菱形AECF=cm2.故選:D.【考點(diǎn)】本題考查菱形的性質(zhì)、勾股定理、含30°直角三角形的性質(zhì)等知識,是重要考點(diǎn),掌握相關(guān)知識是解題關(guān)鍵.4、B【解析】【分析】根據(jù)勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點(diǎn)】此題考查了勾股定理的應(yīng)用,翻折的性質(zhì),熟記勾股定理的計算公式是解題的關(guān)鍵.5、D【解析】【分析】由折疊的性質(zhì)可得DN=CN,根據(jù)勾股定理可求DN的長,即可得出結(jié)果.【詳解】解:∵D是AB中點(diǎn),AB=4,∴AD=BD=2,∵將△ABC折疊,使點(diǎn)C與AB的中點(diǎn)D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故選:D.【考點(diǎn)】本題考查了翻折變換、折疊的性質(zhì)、勾股定理,熟練運(yùn)用折疊的性質(zhì)是本題的關(guān)鍵.6、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時距離最短;∵正方體盒子棱長為2,M為BC的中點(diǎn),∴,∴,故選:B.【考點(diǎn)】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開圖、勾股定理、兩點(diǎn)之間線段最短等知識,解題關(guān)鍵是牢記相關(guān)概念與靈活應(yīng)用.7、C【解析】【分析】根據(jù)勾股定理列方程即可得出結(jié)論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,讀懂題意是解題的關(guān)鍵.二、填空題1、3或6【解析】【分析】分兩種情況分別求解,(1)當(dāng)∠CED′=90°時,如圖(1),根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當(dāng)∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計算即可.【詳解】解:當(dāng)∠CED′=90°時,如圖(1),∵∠CED′=90°,根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當(dāng)∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點(diǎn)】本題考查了矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì)的綜合應(yīng)用,分情況討論,作出圖形是解題關(guān)鍵.2、

【解析】【分析】由等積法解得正方形的邊長,再利用勾股定理解得圖④的直角邊FH的長,在圖2中,利用正弦的定義解得,接著利用勾股定理解得,據(jù)此解得的值,最后利用解答即可.【詳解】解:矩形的面積為:2×6=12正方形的邊長如圖1,如圖2,設(shè)或(舍去)故答案為:,.【考點(diǎn)】本題考查正方形與矩形、圖形的拼接,涉及勾股定理、正弦、余弦等知識,是重要考點(diǎn),掌握相關(guān)知識是解題關(guān)鍵.3、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設(shè)斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點(diǎn)】此題考查勾股定理,解題關(guān)鍵在于列出方程.4、【解析】【分析】設(shè)甲、乙二人出發(fā)后相遇的時間為x,然后利用勾股定理列出方程即可.【詳解】解:設(shè)經(jīng)x秒二人在C處相遇,這時乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中抽象出直角三角形.5、

24

0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.6、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點(diǎn)O為AB邊的中點(diǎn),∴CO=AB=2.5,故答案為:2.5.【考點(diǎn)】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.7、2【解析】【分析】根據(jù)河水深度、竹竿到岸邊的距離、竹竿長構(gòu)成直角三角形,利用勾股定理進(jìn)行計算即可.【詳解】根據(jù)題意畫出示意圖,如圖,則AC=0.5m,,,所以BC即為河水深度,,∵,∴是直角三角形,∴,∴,解得:BC=2(m),故答案為:2.【考點(diǎn)】本題考查了勾股定理,根據(jù)題意畫示意圖找出與所求邊長相關(guān)線段所構(gòu)成直角三角形是解題關(guān)鍵.8、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.三、解答題1、(1)見解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可證∠DAC=∠CBE,根據(jù)AAS可證△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根據(jù)勾股定理可求.(1)證明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.2、(1)(2)3(3)7.5【解析】【分析】(1)梯形的面積等于三個直角三角形的面積的和.即可得:;(2)根據(jù)勾股定理可得三個圖形中面積關(guān)系滿足的有3個;(3)根據(jù)半圓面積和勾股定理即可得結(jié)論:,進(jìn)而求解.(1)解:四邊形ABED的面積可以表示為:,也可以表示為,所以,整理得;(2)設(shè)直角三角形的三條邊按照從小到大分別為a,b,c,則,圖③,∵,∴,圖④,∵∴,圖⑤,∵∴,故答案為:3.(3)∵,∴,∵,∴.【考點(diǎn)】本題考查了勾股定理的證明,解決本題的關(guān)鍵是掌握勾股定理.3、【解析】【分析】先由折疊可知EC=BC=2,進(jìn)而可知AD=CE,通過全等三角形的角角邊判定定理可證明△ADF≌△CEF,由全等可知FE=DF,設(shè)FC為x,則FE=DF=4-x,根據(jù)直角三角形的勾股定理可列方程,從而計算出CF的長度,通過CF與AD的長度可計算出重合部分面積.【詳解】解:∵△AEC是由△ABC沿AC折疊后得到的,∴EC=BC=2,且∠E=∠B=90°,在△ADF與△CEF中,,∴△ADF≌△CEF(AAS),設(shè)FC=x,則FE=DF=4-x,在Rt△CEF中,由勾股定理可知:,∴,解得,∴,故折疊后重合部分的面積為.【考點(diǎn)】本題考查圖形折疊的相關(guān)性質(zhì),以及直角三角形的勾股定理的應(yīng)用,以及全等三角形的判定,找到合適的條件,選擇適合的判定方法去證明全等三角形,利用勾股定理和方程思想列方程是解決本題的關(guān)鍵.4、(1)BD=2,;(2),【解析】【分析】(1)由勾股定理求出BC=4,再根據(jù)中點(diǎn)的性質(zhì)可得到BD,然后再一次運(yùn)用勾股定理求出AD即可;(2)設(shè),則,,利用勾股定理列出方程解,從而得解.【詳解】(1)∵在中,,,∴在中,∴又∵為邊上的中點(diǎn)∴∴在中,∴(2)折疊后如圖所示,為折痕,聯(lián)結(jié)設(shè),則,在中,,即解得:∴∴【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,也考查了折疊的性質(zhì).是常見中考題型.5、m=1【解析】【分析】根據(jù)勾股數(shù)定義:滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù)可得:(3m+2)2+(4m+8)2=(5m+8)2,再解方程即可.【詳解】解:m>0,3m+2,4m+8,5m+8是一組勾股數(shù),(3m+2)2+(4m+8)2=(5m+8)2,解得:m=1.【考點(diǎn)】此題主要考查了勾股數(shù),關(guān)鍵是掌握勾股數(shù)定義.6、(1)(2)①36;②【解析】【分析】(1)設(shè)DE=CE=x,則BE=4-x,依據(jù)S△ABE=AB×DE=BE×AC,即可得到x的值,進(jìn)而得出S1的值.(2)①如圖1,依據(jù)S△ABE=AB×DE=BE×AC,即可得到DE=x,進(jìn)而得出S1=x2;如圖2,依據(jù)S△ABN=AB×HN=AN×BC,即可得到EN=x,進(jìn)而得出S2=x2,再根據(jù)S1+S2=13,即可得到x2=6,進(jìn)而得出單個直角三角形紙片的面積.②如圖3,由折疊可得,AC=CF=3x,所以BF=BC-CF=4x-3x=x,則S3=S△CMF=S△ACM,所以S3=,即可求解.(1)解:∵AC∶BC∶AB=3∶4∶5,AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論