




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
蘇教七年級下冊期末解答題壓軸數(shù)學(xué)綜合測試試卷經(jīng)典及解析一、解答題1.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當(dāng)點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.2.(1)如圖1所示,△ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長線交于點F;①若∠B=90°則∠F=;②若∠B=a,求∠F的度數(shù)(用a表示);(2)如圖2所示,若點G是CB延長線上任意一動點,連接AG,∠AGB與∠GAB的角平分線交于點H,隨著點G的運動,∠F+∠H的值是否變化?若變化,請說明理由;若不變,請求出其值.3.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過程中BD所在的直線與EF所在的直線交于點P.問∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點P在直線a、直線b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).4.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點F在DA的延長線上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.5.如圖1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求證:∠BED=90°;(2)如圖2,延長BE交CD于點H,點F為線段EH上一動點,∠EDF=α,∠ABF的角平分線與∠CDF的角平分線DG交于點G,試用含α的式子表示∠BGD的大小;(3)如圖3,延長BE交CD于點H,點F為線段EH上一動點,∠EBM的角平分線與∠FDN的角平分線交于點G,探究∠BGD與∠BFD之間的數(shù)量關(guān)系,請直接寫出結(jié)論:.6.已知:∠MON=36°,OE平分∠MON,點A,B分別是射線OM,OE,上的動點(A,B不與點O重合),點D是線段OB上的動點,連接AD并延長交射線ON于點C,設(shè)∠OAC=x,(1)如圖1,若AB∥ON,則①∠ABO的度數(shù)是______;②當(dāng)∠BAD=∠ABD時,x=______;當(dāng)∠BAD=∠BDA時,x=______;(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.7.如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF//GH.(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值若變化,說明理由.8.如圖,,點在直線上,點在直線和之間,,平分.(1)求的度數(shù)(用含的式子表示);(2)過點作交的延長線于點,作的平分線交于點,請在備用圖中補全圖形,猜想與的位置關(guān)系,并證明;(3)將(2)中的“作的平分線交于點”改為“作射線將分為兩個部分,交于點”,其余條件不變,連接,若恰好平分,請直接寫出__________(用含的式子表示).9.(1)證明:兩條平行線被第三條直線所截,一對同旁內(nèi)角的角平分線互相垂直.已知:如圖,AB∥CD,.求證:.證明:(2)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥FN,∠AEM與∠CFN的角平分線相交于點O.求證:EO⊥FO.(3)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥PN,MP∥NF,∠AEM與∠CFN的角平分線相交于點O,∠P=102°,求∠O的度數(shù).10.如圖1,在中,平分,平分.(1)若,則的度數(shù)為______;(2)若,直線經(jīng)過點.①如圖2,若,求的度數(shù)(用含的代數(shù)式表示);②如圖3,若繞點旋轉(zhuǎn),分別交線段于點,試問在旋轉(zhuǎn)過程中的度數(shù)是否會發(fā)生改變?若不變,求出的度數(shù)(用含的代數(shù)式表示),若改變,請說明理由:③如圖4,繼續(xù)旋轉(zhuǎn)直線,與線段交于點,與的延長線交于點,請直接寫出與的關(guān)系(用含的代數(shù)式表示).【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據(jù)點P是動點,分三種情況討論:①當(dāng)點P在AB與CD之間時;②當(dāng)點P在AB上方時;③當(dāng)點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點P是動點,分三種情況討論:①當(dāng)點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問題.2.(1)①45°;②∠F=a;(2)∠F+∠H的值不變,是定值180°.【分析】(1)①②依據(jù)AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依據(jù)∠CAE是△ABC解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不變,是定值180°.【分析】(1)①②依據(jù)AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依據(jù)∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根據(jù)∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;(2)由(1)可得,∠F=∠ABC,根據(jù)角平分線的定義以及三角形內(nèi)角和定理,即可得到∠H=90°+∠ABG,進而得到∠F+∠H=90°+∠CBG=180°.【詳解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,故答案為45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;(2)由(1)可得,∠F=∠ABC,∵∠AGB與∠GAB的角平分線交于點H,∴∠AGH=∠AGB,∠GAH=∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,∴∠F+∠H的值不變,是定值180°.【點睛】本題主要考查了三角形內(nèi)角和定理、三角形外角性質(zhì)的綜合運用,熟練運用定理是解題的關(guān)鍵.3.(1)∠EPB=170°;(2)①當(dāng)交點P在直線b的下方時:∠EPB=20°,②當(dāng)交點P在直線a,b之間時:∠EPB=160°,③當(dāng)交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)解析:(1)∠EPB=170°;(2)①當(dāng)交點P在直線b的下方時:∠EPB=20°,②當(dāng)交點P在直線a,b之間時:∠EPB=160°,③當(dāng)交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分線的性質(zhì)直接可求解;(2)分三種情況討論:①當(dāng)交點P在直線b的下方時;②當(dāng)交點P在直線a,b之間時;③當(dāng)交點P在直線a的上方時;分別畫出圖形求解;(3)結(jié)合(2)的探究,分兩種情況得到結(jié)論:①當(dāng)交點P在直線a,b之間時;②當(dāng)交點P在直線a上方或直線b下方時;【詳解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①當(dāng)交點P在直線b的下方時:∠EPB=∠1﹣50°=20°;②當(dāng)交點P在直線a,b之間時:∠EPB=50°+(180°﹣∠1)=160°;③當(dāng)交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|;【點睛】考查知識點:平行線的性質(zhì);三角形外角性質(zhì).根據(jù)動點P的位置,分類畫圖,結(jié)合圖形求解是解決本題的關(guān)鍵.?dāng)?shù)形結(jié)合思想的運用是解題的突破口.4.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.【詳解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不變.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【點睛】本題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.5.(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質(zhì)求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質(zhì)∠ABD+∠BDC=180°解析:(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質(zhì)求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質(zhì)∠ABD+∠BDC=180°,從而根據(jù)∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)過點G作GP∥AB,根據(jù)AB∥CD,得到GP∥AB∥CD,從而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根據(jù)∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分線的定義求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)過點F、G分別作FM∥AB、GM∥AB,從而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根據(jù)BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.【詳解】解:(1)證明:∵BE平分∠ABD,∴∠EBD=∠ABD,∵DE平分∠BDC,∴∠EDB=∠BDC,∴∠EBD+∠EDB=(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如圖2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,過點G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;(3)如圖,過點F、G分別作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),=180°+(∠3+∠5),=180°+∠BFD,整理得:2∠BGD+∠BFD=360°.【點睛】本題主要考查了平行線的性質(zhì)與判定,角平分線的性質(zhì)和三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.6.(1)①18°;②126°;③63°;(2)當(dāng)x=18、36、54時,△ADB中有兩個相等的角.【分析】(1)運用平行線的性質(zhì)以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)解析:(1)①18°;②126°;③63°;(2)當(dāng)x=18、36、54時,△ADB中有兩個相等的角.【分析】(1)運用平行線的性質(zhì)以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)以及△AOB的內(nèi)角和,可得x的值;(2)根據(jù)三角形內(nèi)角和定理以及直角的度數(shù),可得x的值.【詳解】解:(1)如圖1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②當(dāng)∠BAD=∠ABD時,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③當(dāng)∠BAD=∠BDA時,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案為①18°;②126°;③63°;(2)如圖2,存在這樣的x的值,使得△ADB中有兩個相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,則∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,則∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,則∠BAD=36°,故∠OAC=90°-36°=54°;綜上所述,當(dāng)x=18、36、54時,△ADB中有兩個相等的角.【點睛】本題考查了三角形的內(nèi)角和定理和三角形的外角性質(zhì)的應(yīng)用,三角形的內(nèi)角和等于180°,三角形的一個外角等于和它不相鄰的兩個內(nèi)角之和.利用角平分線的性質(zhì)求出∠ABO的度數(shù)是關(guān)鍵,注意分類討論思想的運用.7.(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補,兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補,再根解析:(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補,兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補,再根據(jù)∠BEF與∠EFD的角平分線交于點P,可得∠EPF=90°,進而證明PF∥GH;(3)根據(jù)角平分線定義,及角的和差計算即可求得∠HPQ的度數(shù),進而即可得到結(jié)論.【詳解】解:(1)AB∥CD,理由如下:∵∠1與∠2互補,∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF與∠EFD的角平分線交于點P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°?∠PKG=90°?2∠HPK.∴∠EPK=180°?∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠HPK.∴∠HPQ=∠QPK?∠HPK=45°.∴∠HPQ的大小不發(fā)生變化.【點睛】本題考查了平行線的判定和性質(zhì)、余角和補角,解決本題的關(guān)鍵是綜合運用角平分線的定義、平行線的性質(zhì)、余角和補角.8.(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進行求解;(2)猜測,根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情解析:(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進行求解;(2)猜測,根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情況進行討論,即當(dāng)與,充分利用平行線的性質(zhì)、角平分線的性質(zhì)、等量代換的思想進行求解.【詳解】(1)過點作,,,,.(2)根據(jù)題意,補全圖形如下:猜測,由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點睛】本題考查了平行線的性質(zhì)、角平分線、三角形內(nèi)角和定理、垂直等相關(guān)知識點,解題的關(guān)鍵是掌握相關(guān)知識點,作出適當(dāng)?shù)妮o助線,通過分類討論及等量代換進行求解.9.(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證解析:(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證明;(2)延長交于點,過點作交于點,結(jié)合(1)的方法即可證明;(3)延長、交于點,過點作交于點.結(jié)合(1)的方法可得,再根據(jù)角平分線定義即可求出結(jié)果.【詳解】(1)已知:如圖①,,直線分別交直線,于點,,、分別平分、,求證:;證法,,、分別平分、,.,.;證法2:如圖,過點作交直線于點.,,、分別平分、,.,,..;故答案為:直線分別交直線,于點,,、分別平分、,;(2)證明:如圖,延長交于點,過點作交于點,,,,.、分別平分、,,,,..;(3)解:如圖,延長、交于點,過點作交于點.,,,由(1)證法2可知,、分別平分、,.【點睛】本題考查了平行線的判定與性質(zhì),角平分線的定義,解決本題的關(guān)鍵是掌
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電網(wǎng)造價考試題及答案
- 置業(yè)顧問年工作總結(jié)
- 法學(xué)資格證試題及答案
- 脫硫安規(guī)考試試題及答案
- 幼兒園元宵節(jié)活動總結(jié)
- 家電公司電商客服管理細則
- 2025年執(zhí)業(yè)藥師之中藥學(xué)綜合知識與技能能力檢測試卷A卷附答案
- 保安水電安全知識培訓(xùn)課件
- 易錯題專項單元專項Unit7六選擇合適的選項補全對話三年級英語上冊譯林版含答案
- 江蘇醫(yī)院消防整改方案(3篇)
- 雷火灸新技術(shù)課件
- 深圳前科人員管理辦法
- 山東玲瓏輪胎股份有限公司境外(巴西)投資建設(shè)項目可行性研究報告
- 安全事故大反思大討論心得體會
- 中長導(dǎo)管在神經(jīng)外科臨床應(yīng)用
- 中文版兒童睡眠習(xí)慣問卷CSHQ 含評分維度
- 防暴技能培訓(xùn)課件
- 藥品采購付款管理制度
- 《電子工業(yè)全光網(wǎng)絡(luò)工程技術(shù)規(guī)范》
- 2025至2030年中國牛肉丸行業(yè)市場現(xiàn)狀分析及投資潛力研判報告
- 保利輿情管理制度
評論
0/150
提交評論