




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、若實數(shù)滿足,則的值是()A.1 B.-3或1 C.-3 D.-1或32、圖,在△ABC中,AB=AC,四邊形ADEF為菱形,O為AE,DF的交點,S△ABC=8,則S菱形ADEF=()A.4 B.4 C.4 D.43、妙妙上學經過兩個路口,如果每個路口可直接通過和需等待的可能性相等,那么妙妙上學時在這兩個路口都直接通過的概率是(
)A. B. C. D.4、把標號為1,2,3的三個小球放入一個不透明的口袋中,隨機摸取一個小球然后放回,再隨機摸出一個小球,兩次取出的小球的標號的和大于3的概率是(
)A. B. C. D.5、如圖,在正方形中,,E為對角線上與A,C不重合的一個動點,過點E作于點F,于點G,連接.下列結論:①;②;③;④的最小值為3.其中正確結論的個數(shù)有(
)A.1個 B.2個 C.3個 D.4個6、若關于x的一元二次方程有實數(shù)根,則字母k的取值范圍是(
)A. B.且 C. D.且7、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(
)A.,21 B.,11 C.4,21 D.,69二、多選題(3小題,每小題2分,共計6分)1、已知直角三角形的兩條邊長恰好是方程的兩個根,則此直角三角形斜邊長是(
)A. B. C.3 D.52、平行四邊形ABCD的對角線相交于點O,分別添加下列條件使得四邊形ABCD是矩形的條件有(
)是菱形的條件有(
)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO3、關于x的一元二次方程(k-1)x2+4x+k-1=0有兩個相等的實數(shù)根,則k的值為(
)A.1 B.0 C.3 D.-3第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、關于的方程有兩個不相等的實數(shù)根,那么的取值范圍是__________.2、若關于x的一元二次方程ax2+bx+1=0(a≠0)的解是x=-1,則2021-a+b的值是___.3、在四邊形ABCD中,ABCD,ADBC,添加一個條件________,即可判定該四邊形是菱形.4、已知菱形的邊長為,兩條對角線的長度的比為3:4,則兩條對角線的長度分別是_____________.5、已知一元二次方程ax2+bx+c=0(a≠0),下列結論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數(shù)根;③若b=2a+3c,則方程有兩個不相等的實數(shù)根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結論正確的序號是__________.6、已知x=2是關于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.7、準備在一塊長為30米,寬為24米的長方形花圃內修建四條寬度相等,且與各邊垂直的小路,(如圖所示)四條小路圍成的中間部分恰好是一個正方形,且邊長是小路寬度的4倍,若四條小路所占面積為80平方米,則小路的寬度為_____米.8、社團課上,同學們進行了“摸球游戲”:在一個不透明的盒子里裝有幾十個除顏色不同外其余均相同的黑、白兩種球,將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程.整理數(shù)據(jù)后,制作了“摸出黑球的頻率”與“摸球的總次數(shù)”的關系圖象如圖所示,經分析可以推斷盒子里個數(shù)比較多的是___________(填“黑球”或“白球”).9、如圖,點E為矩形ABCD的邊BC長上的一點,作DF⊥AE于點F,且滿足DF=AB.下面結論:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正確的結論是_____.10、如圖,在四邊形ABCD中,AC=BD=8,E、F、G、H分別是邊AB、BC、CD、DA的中點,則EG2+FH2的值為_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,□ABCD中,AC為對角線,EF⊥AC于點O,交AD于點E,交BC于點F,連結AF、CE.請你探究當O點滿足什么條件時,四邊形AFCE是菱形,并說明理由.2、解方程(組):(1)(2);(3)x(x-7)=8(7-x).3、如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,連接PE,PB.(1)在AC上找一點P,使△BPE的周長最?。ㄗ鲌D說明);(2)求出△BPE周長的最小值.4、如圖,在平行四邊形ABCD中,BE⊥AD,BF⊥CD,垂足分別為E,F(xiàn),且AE=CF.(1)求證:平行四邊形ABCD是菱形;(2)若DB=10,AB=13,求平行四邊形ABCD的面積.5、如圖,是的中線,,且,連接,.(1)求證:;(2)當滿足條件__________時,四邊形是矩形.6、今年忠縣柑橘喜獲豐收,某果園銷售的柑橘“忠橙”和“愛媛”很受消費者的歡迎,“忠橙”售價80元/箱,“愛媛”售價60元/箱.在11月第一周“忠橙”的銷量比“愛媛”的銷量多100箱,且這兩種柑橘的總銷售額為50000元.(1)在11月第一周,該果園“忠橙”和“愛媛”的銷量各為多少箱?(2)為了擴大銷售,11月第二周“忠橙”售價降價,銷量比第一周培加了,“愛媛”售價不變,銷量比第一周增加了,結果這兩種相橘第二周的總銷售額比第一周的總銷售額增加了,求的值-參考答案-一、單選題1、A【解析】【分析】設x2-3x=y.將y代入原方程得到關于y的一元二次方程y2+2y-3=0即可,解這個方程求出y的值,然后利用根的判別式檢驗即可.【詳解】設x2-3x=y.將y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3.當y=1時,x2-3x=1,△=b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,有兩個不相等的實數(shù)根,當y=-3時,x2-3x=-3,△=b2-4ac=(-3)2-4×1×3=9=12<0,無解.故y=1,即x2-3x=1.故選A.【考點】本題考查了換元法解一元二次方程及一元二次方程根的判別式,解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理.2、C【解析】【分析】根據(jù)菱形的性質,結合AB=AC,得出DF為△ABC的中位線,DF∥BC,,從而得出AE為△ABC的高,得出,再根據(jù)菱形的面積公式,即可得出菱形的面積.【詳解】解:∵四邊形ADEF為菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正確.故選:C.【考點】本題主要考查了菱形的性質,中位線的性質,等腰三角形的性質和判斷,平行線的性質,菱形的面積,三角形面積的計算,根據(jù)菱形的性質和等腰三角形的性質得出DF為△ABC的中位線,是解題的關鍵.3、A【解析】【分析】根據(jù)題意畫出樹形圖,求出在這兩個路口都直接通過的概率為即可求解.【詳解】解:由題意畫樹形圖得,由樹形圖得共有4種等可能性,其中在這兩個路口都直接通過的概率是P=.故選:A【考點】本題考查了列表或畫樹形圖求概率,理解題意,正確列表或畫樹形圖得到所有等可能的結果是解題關鍵.4、D【解析】【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出的小球標號和大于3的情況,再利用概率公式即可求得答案.【詳解】解:根據(jù)題意,畫樹狀圖如下:共有9種等可能結果,其中兩次摸出的小球標號的和大于3的有6種,∴兩次摸出的小球標號的和大于3的概率是,故選:D【考點】此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、C【解析】【分析】延長,交于點,交于點,連接,交于點,先根據(jù)正方形的性質、三角形全等的判定定理與性質得出,再根據(jù)矩形的判定與性質可得,由此可判斷①;先根據(jù)三角形全等的性質可得,再根據(jù)矩形的性質可得,然后根據(jù)等腰三角形的性質可得,由此可判斷③;根據(jù)直角三角形的性質可得,從而可得,由此可判斷②;先根據(jù)垂線段最短可得當時,取得最小值,再解直角三角形可得的最小值,從而可得的最小值,由此可判斷④.【詳解】解:如圖,延長,交于點,交于點,連接,交于點,四邊形是正方形,,,在和中,,,,,四邊形是矩形,,,即結論①正確;,,,即結論③正確;,,,,即,結論②正確;由垂線段最短可知,當時,取得最小值,此時在中,,又,的最小值與的最小值相等,即為,結論④錯誤;綜上,正確的結論為①②③,共有3個,故選:C.【考點】本題考查了正方形的性質、三角形全等的判定定理與性質、解直角三角形等知識點,通過作輔助線,構造全等三角形和直角三角形是解題關鍵.6、D【解析】【分析】利用一元二次方程的定義和根的判別式的意義得到k≠0且△=(-2)2-4k×(-3)≥0,然后求出兩不等式的公共部分即可.【詳解】解:根據(jù)題意得k≠0且△=(-2)2-4k×(-3)≥0,解得且k≠0.故選:D.【考點】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.也考查了一元二次方程的定義.7、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項得,配方得,即,∴a=-4,b=21.故選:A【考點】本題考查了配方法解一元二次方程,解題關鍵是配方:在二次項系數(shù)為1時,方程兩邊同時加上一次項系數(shù)一半的平方.二、多選題1、AC【解析】【分析】先解出一元二次方程,再根據(jù)勾股定理計算即可;【詳解】,,∴或,當2、3是直角邊時,斜邊;∵,∴3可以是三角形斜邊;故選AC.【考點】本題主要考查了一元二次方程的求解、勾股定理,準確計算是解題的關鍵.2、AEBCD【解析】【分析】因為四邊形ABCD是平行四邊形,要成為矩形加上一個角為直角或對角線相等即可;要使其成為菱形,加上一組鄰邊相等或對角線垂直均可.【詳解】A選項:∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個角是直角的平行四邊形是矩形)B選項:∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對角線互相垂直的平行四邊形是菱形)C選項:∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項:如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項:∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點】考查了菱形和矩形的判定,解題關鍵是掌握平行四邊形的性質和菱形、矩形的判定方法.3、C【解析】【分析】由方程有兩個相等的實數(shù)根,根據(jù)根的判別式可得到關于k的方程,則可求得k的值.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有兩個相等的實數(shù)根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故選C.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.三、填空題1、且【解析】【詳解】分析:根據(jù)一元二次方程的定義以及根的判別式的意義可得△=4-12m>0且m≠0,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=0有兩個不相等的實數(shù)根,∴△>0且m≠0,∴4-12m>0且m≠0,∴m<且m≠0,故答案為m<且m≠0.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義.2、2022【解析】【分析】把x=-1代入方程可以得到-a+b的值,從而得到所求答案.【詳解】解:∵x=-1,∴a-b+1=0,∴-a+b=1,∴2021-a+b=2022,故答案為2022.【考點】本題考查一元二次方程的應用,熟練掌握一元二次方程解的意義、等式的性質和代數(shù)式求值的方法是解題關鍵.3、AB=AD(答案不唯一)【解析】【分析】根據(jù)平行四邊形的判定證出四邊形ABCD是平行四邊形,根據(jù)菱形的判定證出即可.【詳解】解:添加的條件是AB=AD.理由如下:∵ABCD,ADBC,∴四邊形ABCD是平行四邊形,若AB=AD,∴四邊形ABCD是菱形.【考點】本題主要考查了菱形的判定、平行四邊形的判定等,能根據(jù)菱形的判定定理正確地添加條件是解此題的關鍵.4、,【解析】【分析】如圖BD:AC=3:4,AB=10cm,設BD=3x,則AC=4x,根據(jù)菱形的性質,DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【詳解】如圖BD:AC=3:4,AB=10cm,設BD=3x,則AC=4x,根據(jù)菱形的性質,DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,則兩條對角線的長度分別是12cm,16cm.故答案為:12cm,16cm.【考點】本題考查菱形的對角線問題,掌握菱形的性質,利用對角線之間的關系,和勾股定理構造方程是解題關鍵.5、①③④【解析】【分析】利用根與系數(shù)的關系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系及根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.6、﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因為k≠0,所以k的值為﹣3.故答案為﹣3.【考點】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.7、1.25【解析】【分析】設小路的寬度為,根據(jù)圖形所示,用表示出小路的面積,由小路面積為80平方米,求出未知數(shù).【詳解】設小路的寬度為,由題意和圖示可知,小路的面積為,解一元二次方程,由,可得.【考點】本題綜合考查一元二次方程的列法和求解,這類實際應用的題目,關鍵是要結合題意和圖示,列對方程.8、白球【解析】【分析】利用頻率估計概率的知識,確定摸出黑球的概率,由此得到答案.【詳解】解:由圖可知:摸出黑球的頻率是0.2,根據(jù)頻率估計概率的知識可得,摸一次摸到黑球的概率為0.2,∴可以推斷盒子里個數(shù)比較多的是白球,故答案為:白球.【考點】此題考查利用頻率估計概率,正確理解圖象的意義是解題的關鍵.9、①②④.【解析】【分析】證明Rt△DEF≌Rt△DEC得出①正確;在證明△ABE≌△DFA得出S△ABE=S△ADF;②正確;得出BE=AF,④正確,③不正確;即可得出結論.【詳解】解:四邊形是矩形,,在和中,,①正確在和中,;②正確,④正確,③不正確故答案為:①②④.【考點】本題考查了矩形的性質、全等三角形的判定與性質等知識,熟練掌握矩形的性質,證明三角形全等是解題的關鍵.10、64【解析】【分析】連接HE、EF、FG、GH,根據(jù)三角形中位線定理、菱形的判定定理得到平行四邊形HEFG是菱形,根據(jù)菱形的性質、勾股定理計算即可.【詳解】解:連接HE、EF、FG、GH,∵E、F分別是邊AB、BC的中點,∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四邊形HEFG為平行四邊形,∵AC=BD,∴EH=EF,∴平行四邊形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案為64.【考點】本題考查的是中點四邊形,掌握三角形中位線定理、菱形的判定和性質定理是解題的關鍵.四、解答題1、當O是AC的中點時,四邊形AFCE是菱形,理由見解析.【解析】【分析】當O是AC的中點時,四邊形AFCE是菱形;根據(jù)平行四邊形性質推出AD∥BC,根據(jù)全等三角形的判定和性質求出OE=OF,推出平行四邊形AFCE,根據(jù)菱形的判定推出即可.【詳解】解:當O是AC的中點時,四邊形AFCE是菱形.理由如下:連接AF,CE.∵在?ABCD中,AD∥BC,∴∠EAO=∠FCO.∵點O是AC的中點,∴AO=CO.又∵∠EOA=∠FOC,∴△AOE≌△COF,∴OE=OF.又∵AO=CO,∴四邊形AFCE是平行四邊形.∴當EF⊥AC時,四邊形AFCE是菱形.【考點】本題考查了平行四邊形的性質,菱形的判定等知識點的運用,關鍵是根據(jù)題意推出OE=OF,題目比較典型.2、(1)(2)x=-(3)x1=7,x2=-8【解析】【分析】(1)根據(jù)代入消元法,可得方程組的解;(2)根據(jù)等式的性質,化為整式方程,根據(jù)解整式方程,可得答案;(3)先移項,再提公因式,再求解即可.(1)由①,得y=3x+4③將③代入②,得x-2(3x+4)=-3,解得x=-1,將x=-1代入③,解得y=1.所以原方程組的解為;(2);解:方程兩邊都乘(x+1)(x-1),得(x-1)2-3=(x+1)(x-1),解得x=-.經檢驗,x=-是原方程的解.(3)x(x-7)=8(7-x).解:原方程可變形為x(x-7)+8(x-7)=0,(x-7)(x+8)=0.x-7=0,或x+8=0.∴x1=7,x2=-8.【考點】本題考查了解二元一次方程組、分式方程及一元二次方程,利用等式的性質得出整式方程是解題關鍵,要檢驗分時方程的根.3、(1)見解析(2)12【解析】【分析】(1)連接DE,交AC于點P′,連接BP′,當點P在點P′處時,△BPE的周長最小.理由:證明△ABP′≌△ADP′,即可求解;(2)根據(jù)(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.從而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如圖,連接DE,交AC于點P′,連接BP′,當點P在點P′處時,△BPE的周長最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∵AP′=AP′,∴△ABP′≌△ADP′,∴BP′=DP′,∴BP+PE=DP′+P′E≥DE,即當點P位于PP′時,△BPE的周長PB+EP+BE最??;(2)解:由(1)得:BP′=DP′,∴P′B+P′E=DE.∵BE=2,AE=3BE,∴AE=6.∴AD=AB=8.∴DE==10.∴PB+PE的最小值是10.∴△BPE周長的最小值為10+BE=10+2=12.【考點】本題主要考查了正方形的性質,勾股定理,最短距離,全等三角形的判定和性質等,熟練掌握相關知識點是解題的關鍵.4、(1)見解析(2)120【解析】【分析】(1)根據(jù)平行四
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西藏環(huán)境應急預案哪家靠譜(3篇)
- 賞花節(jié)疫情防控應急預案(3篇)
- 道路維修工程應急預案演練(3篇)
- 哈爾濱電力職業(yè)技術學院《流體力學A》2024-2025學年第一學期期末試卷
- 鄭州師范學院《道路橋梁工程概論》2024-2025學年第一學期期末試卷
- 四川建筑職業(yè)技術學院《生物質能源利用原理與技術》2024-2025學年第一學期期末試卷
- 煙臺幼兒師范高等??茖W校《牙體牙髓病學實驗》2024-2025學年第一學期期末試卷
- 白城職業(yè)技術學院《高級生物信息學》2024-2025學年第一學期期末試卷
- 撫順職業(yè)技術學院《Java語言程序設計基礎實踐》2024-2025學年第一學期期末試卷
- 晉城職業(yè)技術學院《大學體育(Ⅰ)》2024-2025學年第一學期期末試卷
- 手術室停電停水應急預案
- 人教版初中八年級數(shù)學上冊《第十一章 三角形》大單元整體教學設計
- 《高級統(tǒng)計實務和案例分析》和考試大綱
- 韋萊韜悅-東方明珠新媒體集團一體化職位職級體系方案-2018
- 2024新版(外研版三起孫有中)三年級英語上冊單詞帶音標
- 注塑缺陷的原因分析與解決對策培訓教程
- 中歐班列課件
- 2025年九省聯(lián)考新高考 物理試卷(含答案解析)
- 口腔頜面外科消毒和滅菌-手術區(qū)的消毒消毒巾鋪置法(口腔科技術)
- 醫(yī)院標識標牌采購投標方案(技術方案)
- 2025屆廣州市高三年級階段訓練(8月市調研摸底) 數(shù)學試卷(含答案)
評論
0/150
提交評論