




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省化州市中考數(shù)學真題分類(平行線的證明)匯編同步訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、在四邊形ABCD中,如果∠B+∠C=180°,那么
()A.AB∥CD B.AD∥BC C.AB與CD相交 D.AB與DC垂直2、下列命題:①對頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有(
).A.①②③④ B.①④ C.②④ D.①②④3、用反證法證明命題“三角形中必有一個內(nèi)角小于或等于60°”時,首先應(yīng)該假設(shè)這個三角形中()A.有一個內(nèi)角小于60° B.每一個內(nèi)角都小于60°C.有一個內(nèi)角大于60° D.每一個內(nèi)角都大于60°4、下列命題中,假命題是(
)A.正方形都相似 B.對角線和一邊對應(yīng)成比例的矩形相似C.等腰直角三角形都相似 D.底角為60°的兩個等腰梯形相似5、給定下列條件,不能判定三角形為直角三角形的是(
)A.∠A:∠B:∠C=1∶2∶3 B.∠A+∠B=∠CC. D.∠A=2∠B=3∠C6、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等邊三角形 B.銳角三角形 C.鈍角三角形 D.直角三角形7、如圖所示,下列推理及括號中所注明的推理依據(jù)錯誤的是(
)A.,(內(nèi)錯角相等,兩直線平行)B.,(兩直線平行,同旁內(nèi)角互補)C.,(兩直線平行,同旁內(nèi)角互補)D.,(同位角相等,兩直線平行)8、在中,,則為(
)三角形.A.銳角 B.直角 C.鈍角 D.等腰第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在ΔABC中,E、F分別是AB、AC上的兩點,∠1+∠2=235°,則∠A=____度.2、如圖,將三角形紙片ABC沿EF折疊,使得A點落在BC上點D處,連接DE,DF,.設(shè),,則α與β之間的數(shù)量關(guān)系是________.3、如圖,將直角三角形紙片ABC進行折疊,使直角頂點A落在斜邊BC上的點E處,并使折痕經(jīng)過點C,得到折痕CD.若∠CDE=70°,則∠B=______°.4、如圖,則∠A+∠B+∠C+∠D+∠E的度數(shù)是__.5、下列說法:(1)兩點之間的所有連線中,線段最短;(2)相等的角是對頂角;(3)過一點有且僅有一條直線與已知直線平行;(4)長方體是四棱柱.其中正確的有______(填正確說法的序號).6、如圖,四邊形ABCD中,點M,N分別在AB,BC上,將沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠B=___°.7、如圖,當∠ABC,∠C,∠D滿足條件______________時,AB∥ED.三、解答題(7小題,每小題10分,共計70分)1、已知:如圖,EF∥CD,.(1)判斷與的位置關(guān)系,并說明理由.(2)若平分,平分,且,求的度數(shù).2、(1)如圖(a),BD平分,CD平分.試確定和的數(shù)量關(guān)系.(2)如圖(b),BE平分,CE平分外角.試確定和的數(shù)量關(guān)系.(3)如圖(c),BF平分外角,CF平分外角.試確定和的數(shù)量關(guān)系.3、(1)在銳角中,邊上的高所在直線和邊上的高所在直線的交點為,,求的度數(shù).(2)如圖,和分別平分和,當點在直線上時,且B、P、D三點共線,,則_________.(3)在(2)的基礎(chǔ)上,當點在直線外時,如下圖:,,求的度數(shù).4、如圖,平分,與相交于F,,求證:.5、如圖,在中,,點D在線段BC上運動(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點D從B向C運動時,逐漸變__________(填“大”或“小”),但與的度數(shù)和始終是__________度.(2)當DC的長度是多少時,,并說明理由.6、已知:如圖,.求證:.分析:如圖,欲證,只要證______.證明:,(已知)又,(
)__________.(
).(__________,____________)7、如圖,已知AB⊥BC,BC⊥CD,.求證:BE∥CF-參考答案-一、單選題1、A【解析】【分析】∠B與∠C是直線AB,CD被直線BC所截構(gòu)成的同旁內(nèi)角,根據(jù)∠B+∠C=180°,得到AB∥CD.【詳解】∵∠B+∠C=180°,∴AB∥CD(同旁內(nèi)角互補,兩直線平行).故選A.【考點】正解找出“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關(guān)鍵,不能遇到相等或互補關(guān)系的角就誤認為具有平行關(guān)系,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行.2、D【解析】【分析】對于①,根據(jù)對頂角的性質(zhì)即可判斷命題正誤;對于②,根據(jù)平行線的判定定理判斷命題的正誤;對于③,根據(jù)絕對值的性質(zhì)知a=b,據(jù)此判斷命題③的正誤;對于④,把x=2代入2|x|-1可得2|x|-1=3,據(jù)此判斷命題的正誤,綜上可選出正確答案.【詳解】解:對于①,由對頂角的性質(zhì)知,對頂角相等,故命題①為真命題;對于②,同位角相等,兩直線平行,故命題②為真命題;對于③,如果|a|=|b|,則a=b,故命題③為假命題;對于④,若x=2,則2|x|-1=3,故④為真命題.綜上可知,命題是真命題的有①②④.故選D.【考點】本題主要考查命題,熟知平行線及絕對值等各知識是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個內(nèi)角小于或等于60°”時,應(yīng)先假設(shè)三角形中每一個內(nèi)角都不小于或等于60°,即每一個內(nèi)角都大于60°.故選:D.【考點】本題考查反證法,熟知反證法的證明步驟,正確得出原結(jié)論的反面是解答的關(guān)鍵.4、B【解析】【分析】根據(jù)命題的定義判斷真假即可;【詳解】B沒說清楚一邊是矩形的長還是寬;故答案選B.【考點】本題主要考查了命題的知識點,準確判斷是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)三角形的內(nèi)角和等于180°求出最大角,然后選擇即可.【詳解】解:A、最大角∠C=×180°=90°,是直角三角形,不符合題意;B、最大角∠C=180°÷2=90°,是直角三角形,不符合題意;C、設(shè)∠A=x,則∠B=2x,∠C=3x,所以,x+2x+3x=180°,解得x=30°,最大角∠C=3×30°=90°,是直角三角形,不符合題意;D、設(shè)∠A=x,則∠B=x,∠C=x,所以,,解得,是鈍角三角形,符合題意.故選:D.【考點】本題考查了三角形的內(nèi)角和定理,求出各選項中的最大角是解題的關(guān)鍵.6、D【解析】【分析】由于∠A-∠C=∠B,再結(jié)合∠A+∠B+∠C=180°,易求∠A,進而可判斷三角形的形狀.【詳解】∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故選D.【考點】本題考查了三角形內(nèi)角和定理,求出∠A的度數(shù)是解題的關(guān)鍵.7、C【解析】【分析】依據(jù)內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;同位角相等,兩直線平行進行判斷即可.【詳解】解:.,(內(nèi)錯角相等,兩直線平行),正確;.,(兩直線平行,同旁內(nèi)角互補),正確;.,(兩直線平行,同旁內(nèi)角互補),故選項錯誤;.,(同位角相等,兩直線平行),正確;故選:C.【考點】本題主要考查了平行線的性質(zhì)與判定,平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系,平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.8、B【解析】【分析】根據(jù)分別設(shè)出三個角的度數(shù),再根據(jù)三角形的內(nèi)角和為180°列出一個方程,解此方程即可得出答案.【詳解】∵∴可設(shè)∠A=x,∠B=2x,∠C=3x根據(jù)三角形的內(nèi)角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案選擇B.【考點】本題主要考查的是三角形的基本概念.二、填空題1、55【解析】【分析】根據(jù)三角形內(nèi)角和定理可知,要求∠A只要求出∠AEF+∠AFE的度數(shù)即可.【詳解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°?235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形內(nèi)角和定理)∴∠A=180°?125°=55°,故答案為:55°【考點】本題是有關(guān)三角形角的計算問題.主要考察三角形內(nèi)角和定理的應(yīng)用和計算,找到∠A所在的三角形是關(guān)鍵.2、【解析】【分析】由折疊的性質(zhì)可知:,再利用三角形內(nèi)角和定理及角之間的關(guān)系證明,,即可找出α與β之間的數(shù)量關(guān)系.【詳解】解:由折疊的性質(zhì)可知:,∵,∴,∴,∵,,∴,∴,故答案為:.【考點】本題考查折疊的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵是根據(jù)折疊的性質(zhì)求出,根據(jù)角之間的關(guān)系求出,.3、50【解析】【分析】根據(jù)折疊的性質(zhì)求得∠CDE=∠CDA=70°,得到∠BDE=40°,再利用余角的性質(zhì)即可求解.【詳解】解:根據(jù)折疊的性質(zhì)得:∠CDE=∠CDA=70°,∠CED=∠A=90°,∴∠BDE=180°-70°-70°=40°,∠BED=180°-90°=90°,∴∠B=180°-90°-40°=50°,故答案為:50.【考點】本題考查翻折變換,三角形內(nèi)角和定理等知識,關(guān)鍵是根據(jù)翻折前后對應(yīng)角相等,利用三角形內(nèi)角和定理求解即可.4、180°【解析】【分析】由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,得∠4=∠A+∠2,∠2=∠D+∠C,進而利用三角形的內(nèi)角和定理求解.【詳解】解:如圖可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案為:180°.【考點】本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,解答的關(guān)鍵是溝通外角和內(nèi)角的關(guān)系.5、(1)、(4).【解析】【分析】根據(jù)所學公理和性質(zhì)解答即可.【詳解】解:(1)兩點之間的所有連線中,線段最短,故本說法正確;(2)相等的角不一定是對頂角,但對頂角相等,故本說法錯誤;(3)應(yīng)為過直線外一點有且僅有一條直線與已知直線平行,故本說法錯誤;(4)長方體是四棱柱,正確.故答案為(1)、(4).【考點】本題是對數(shù)學語言的嚴謹性的考查,記憶數(shù)學公理、性質(zhì)概念等一定要做的嚴謹.6、95【解析】【詳解】∵MF//AD,F(xiàn)N//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案為:957、∠ABC=∠C+∠D【解析】【分析】延長CB交DE于F,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠EFB=∠C+∠D,再根據(jù)同位角相等,兩直線平行解答即可.【詳解】如圖,延長CB交DE于F,則∠EFB=∠C+∠D,當∠ABC=∠EFB時,AB∥ED,所以,當∠ABC=∠C+∠D時,AB∥ED.故答案為∠ABC=∠C+∠D.【考點】本題考查了平行線的判定,作輔助線,把∠C、∠D轉(zhuǎn)化為一個角的度數(shù)是解題的關(guān)鍵.三、解答題1、(1)平行,理由見解析;(2)80°【解析】【分析】(1)根據(jù)可得,再由可得由此即可證明;(2)由平行線的性質(zhì)可得,再由角平分線的定義可得,則,由此即可得到答案.【詳解】解:(1).理由:,,又,,;(2),,平分,,∴,平分,.【考點】本題主要考查了平行線的性質(zhì)與判定,角平分線的定義,解題的關(guān)鍵在于能夠熟練掌握平行線的性質(zhì)與判定條件以及角平分線的定義.2、(1);(2);(3)【解析】【分析】(1)根據(jù)三角形的內(nèi)角和定理以及角平分線的定義即可確定和的數(shù)量關(guān)系;(2)根據(jù)三角形的外角性質(zhì)以及角平分線的定義可得,進而可得和的數(shù)量關(guān)系;(3)根據(jù)三角形的內(nèi)角和定理可得,,結(jié)合角平分線的定義,根據(jù)即可確定和的數(shù)量關(guān)系.【詳解】(1)在中,.在中,.∵,,∴;(2)在中,.在中,.∵,,∴.(3)在中,.在中,.∵,.,,∴.【考點】本題考查了三角形的內(nèi)角和定理,三角形的外角性質(zhì),角平分線的定義,熟練掌握以上知識是解題的關(guān)鍵.3、(1);(2);(3).【解析】【分析】(1)根據(jù)對頂角相等以及四邊形的內(nèi)角和進行判斷即可;(2)法一:根據(jù)以及和分別平分和,算出和,從而算出;法二:根據(jù)三角形的外角定理得到∠APC=∠B+∠PAB+∠PCB,再求出∠PAB+∠PCB,故可求解;(3)法一:連接AC,根據(jù)三角形的內(nèi)角和與角平分線的性質(zhì)分別求出,,故可求解;法二:連接BD并延長到G根據(jù)三角形的外角定理得到∠ADC=∠2+∠4+∠APC,再求出∠2+∠4,故可求解.【詳解】(1)如圖邊上的高所在直線和邊上的高所在直線的交點為∴又∵∴∵在四邊形中,內(nèi)角和為∴.(2)法一:∵和分別平分和∴又∵∴∴∴.法二:連接BD,∵B、P、D三點共線∴BD、AF、CE交于P點∵∠APD=∠BAP+∠ABP,∠CPD=∠BCP+∠CBP,∴∠APC=∠B+∠PAB+∠PCB∵和分別平分和,∴∠PAC=∠PAB,∠PCA=∠PCB,∵∠APC=100°,∴∠PAC+∠PCA=180°?100°=80°,∴∠PAB+∠PCB=80°,∴∠B=∠APC?(∠PAB+∠PCB)=100°?80°=20°.(3)法一:如圖:連接AC∵,∴∴又∵和分別平分和∴∴∴.法二:如圖,連接BD并延長到G,∵∠ADG=∠2+∠APD,∠CDG=∠4+∠CPD,∴∠ADC=∠2+∠4+∠APC,∴∠2+∠4=30°同理可得∠APC=∠1+∠3+∠B,∠1=∠2,∠3=∠4,∴∠B=∠APC-∠2-∠4=100°-30°=70°∴∠B=70°.【考點】本題考查三角形的外角,角平分線的定義,三角形內(nèi)角和定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.4、見解析【解析】【分析】由AB∥CD,可知∠1=∠CFE;由AE平分∠BAD,得到∠1=∠2,再由已知可得∠2=∠E,即可證明AD∥BC.【詳解】解:∵AB∥CD,∴∠1=∠CFE,∵AE平分∠BAD,∴∠1=∠2,∵∠CFE=∠E,∴∠2=∠E,∴AD∥BC.【考點】本題考查角平分線的性質(zhì)以及平行線的判定定理.關(guān)鍵是利用平行線的性質(zhì)以及角平分線的性質(zhì)解答.5、(1)??;140(2)當DC=2時,△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內(nèi)角和即可得出結(jié)論;(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年西班牙語DELEC1級閱讀訓(xùn)練試卷:政治與社會議題分析
- 2025年事業(yè)單位招聘考試綜合類專業(yè)知識試卷(政治知識)試題庫
- 2025年網(wǎng)絡(luò)編輯師考試網(wǎng)絡(luò)編輯網(wǎng)絡(luò)內(nèi)容審核與合規(guī)性評估能力提升策略試題
- 2025年西班牙語DELE考試真題模擬解析試卷
- 提升學習動力游戲化教育的力量
- 教師心理素質(zhì)對教學質(zhì)量的影響
- 2024年重慶酉陽縣公安局輔警崗位招聘真題
- 2024年貴港市公安局招聘輔警真題
- 風險管理模擬試題及答案
- 2026屆山東省 化學高一第一學期期末質(zhì)量檢測試題含解析
- 唯奮斗最青春+課件-2026屆跨入高三第一課主題班會
- 共青團中央所屬事業(yè)單位2024年度社會公開招聘筆試備考題庫參考答案詳解
- 2025年《分級護理制度》考試試題(及答案)
- 高中喀斯特地貌說課課件
- 氣候變化與健康課件
- 公司電腦配備管理辦法
- 留疆戰(zhàn)士考試試題及答案
- 大學生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)(創(chuàng)新創(chuàng)業(yè)課程)完整全套教學課件
- 樓板下加鋼梁加固施工方案
- X射線衍射課件(XRD)
- 常見皮膚病的種類及癥狀圖片、簡介大全課件
評論
0/150
提交評論