廣州工商學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
廣州工商學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
廣州工商學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
廣州工商學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
廣州工商學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共2頁廣州工商學(xué)院《大數(shù)據(jù)技術(shù)基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設(shè)要分析某產(chǎn)品在不同地區(qū)的銷售情況,同時考慮地區(qū)的經(jīng)濟(jì)發(fā)展水平和人口密度等因素,以下哪種分析方法較為合適?()A.方差分析B.多元回歸分析C.因子分析D.對應(yīng)分析2、在時間序列數(shù)據(jù)分析中,預(yù)測未來值是常見的任務(wù)。假設(shè)我們有一組月度銷售數(shù)據(jù),以下關(guān)于時間序列預(yù)測方法的描述,正確的是:()A.簡單線性回歸可以準(zhǔn)確預(yù)測時間序列數(shù)據(jù)的未來值B.ARIMA模型適用于具有明顯季節(jié)性和趨勢性的時間序列C.不考慮數(shù)據(jù)的平穩(wěn)性,直接應(yīng)用預(yù)測模型D.預(yù)測的時間跨度越長,預(yù)測結(jié)果的準(zhǔn)確性就越高3、在進(jìn)行數(shù)據(jù)預(yù)處理時,特征工程是重要的環(huán)節(jié)。以下關(guān)于特征工程的描述,錯誤的是:()A.特征縮放可以加快模型的訓(xùn)練速度B.特征選擇可以去除無關(guān)或冗余的特征C.特征構(gòu)建是從原始數(shù)據(jù)中創(chuàng)造新的特征D.特征工程對模型的性能沒有影響4、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量問題的根源可能來自多個方面。以下關(guān)于數(shù)據(jù)質(zhì)量問題根源的說法中,錯誤的是?()A.數(shù)據(jù)質(zhì)量問題可能源于數(shù)據(jù)采集過程中的錯誤和不規(guī)范B.數(shù)據(jù)質(zhì)量問題可能由于數(shù)據(jù)存儲和管理不善導(dǎo)致C.數(shù)據(jù)質(zhì)量問題可能是由于數(shù)據(jù)分析方法不當(dāng)引起的D.數(shù)據(jù)質(zhì)量問題只與數(shù)據(jù)本身有關(guān),與數(shù)據(jù)處理的過程和人員無關(guān)5、對于一個不平衡的數(shù)據(jù)集(例如,某一類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別),以下哪種方法可以提高模型對少數(shù)類別的識別能力?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是6、在數(shù)據(jù)分析的關(guān)聯(lián)規(guī)則挖掘中,以下關(guān)于支持度和置信度的說法,錯誤的是()A.支持度表示項集在數(shù)據(jù)集中出現(xiàn)的頻率B.置信度表示在包含前提項集的事務(wù)中同時包含結(jié)果項集的概率C.支持度和置信度越高,關(guān)聯(lián)規(guī)則越有價值D.只考慮支持度和置信度就可以確定有效的關(guān)聯(lián)規(guī)則7、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的配色方案選擇也很重要。假設(shè)要創(chuàng)建一個展示銷售數(shù)據(jù)的圖表,以下關(guān)于配色方案選擇的描述,正確的是:()A.隨意選擇喜歡的顏色,不考慮顏色的對比度和可讀性B.使用過于鮮艷和刺眼的顏色組合,以吸引注意力C.遵循色彩理論和設(shè)計原則,選擇對比度高、易于區(qū)分和視覺舒適的配色方案,使數(shù)據(jù)清晰可讀,并根據(jù)數(shù)據(jù)的性質(zhì)和重要性進(jìn)行顏色映射D.不考慮色盲和色弱人群的觀看體驗,只追求美觀8、數(shù)據(jù)分析中的模型部署是將訓(xùn)練好的模型應(yīng)用到實際生產(chǎn)環(huán)境中。假設(shè)要將一個預(yù)測模型部署為在線服務(wù),以下哪個方面可能是需要重點(diǎn)關(guān)注的?()A.模型的性能和響應(yīng)時間B.數(shù)據(jù)的安全性和隱私保護(hù)C.系統(tǒng)的可擴(kuò)展性和穩(wěn)定性D.以上方面都需要重點(diǎn)關(guān)注9、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具有很多,其中Tableau是一種常用的工具。以下關(guān)于Tableau的描述中,錯誤的是?()A.Tableau可以連接多種數(shù)據(jù)源,進(jìn)行數(shù)據(jù)的導(dǎo)入和整合B.Tableau可以制作各種類型的圖表,進(jìn)行數(shù)據(jù)可視化C.Tableau的操作簡單易學(xué),適用于非專業(yè)用戶D.Tableau只能處理小規(guī)模數(shù)據(jù)集,對于大規(guī)模數(shù)據(jù)集無法處理10、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評估是確保數(shù)據(jù)可靠性的關(guān)鍵步驟。假設(shè)要評估一個新收集的數(shù)據(jù)集的質(zhì)量,以下關(guān)于數(shù)據(jù)質(zhì)量評估指標(biāo)的描述,正確的是:()A.只關(guān)注數(shù)據(jù)的準(zhǔn)確性,忽略完整性和一致性B.不制定明確的評估指標(biāo)和標(biāo)準(zhǔn),主觀判斷數(shù)據(jù)質(zhì)量C.綜合考慮準(zhǔn)確性、完整性、一致性、時效性、可用性等指標(biāo),制定量化的評估標(biāo)準(zhǔn)和方法,對數(shù)據(jù)質(zhì)量進(jìn)行全面評估,并提出改進(jìn)措施D.認(rèn)為數(shù)據(jù)質(zhì)量評估是一次性的工作,不需要持續(xù)監(jiān)測和改進(jìn)11、對于一個不平衡的數(shù)據(jù)集,若要通過采樣方法來平衡數(shù)據(jù),以下哪種采樣策略可能會導(dǎo)致過擬合?()A.隨機(jī)過采樣B.隨機(jī)欠采樣C.SMOTE采樣D.以上都有可能12、在數(shù)據(jù)分析中,數(shù)據(jù)的歸一化和標(biāo)準(zhǔn)化是常見的操作。假設(shè)你有一個包含不同量綱特征的數(shù)據(jù)集,以下關(guān)于這兩種操作的作用,哪一項是最關(guān)鍵的?()A.使數(shù)據(jù)符合正態(tài)分布,便于進(jìn)行統(tǒng)計分析B.消除特征之間的量綱差異,使不同特征具有可比性C.增加數(shù)據(jù)的多樣性和復(fù)雜性D.沒有實際作用,可以忽略13、數(shù)據(jù)分析中,數(shù)據(jù)可視化的作用不僅僅是美觀。以下關(guān)于數(shù)據(jù)可視化作用的說法中,錯誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢B.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率,減少分析時間和成本C.數(shù)據(jù)可視化可以增強(qiáng)數(shù)據(jù)的說服力和影響力,使分析結(jié)果更容易被接受D.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)分析報告看起來更漂亮,對分析結(jié)果沒有實質(zhì)性的幫助14、對于一個包含多個數(shù)值型變量的數(shù)據(jù)集,若要判斷數(shù)據(jù)是否符合正態(tài)分布,應(yīng)采用哪種檢驗方法?()A.t檢驗B.卡方檢驗C.正態(tài)性檢驗D.F檢驗15、在數(shù)據(jù)挖掘中,以下哪種算法常用于對客戶進(jìn)行分類,以實現(xiàn)精準(zhǔn)營銷?()A.決策樹算法B.關(guān)聯(lián)規(guī)則算法C.神經(jīng)網(wǎng)絡(luò)算法D.遺傳算法16、假設(shè)要分析兩個變量之間的因果關(guān)系,以下關(guān)于因果分析方法的描述,正確的是:()A.相關(guān)性強(qiáng)就意味著存在因果關(guān)系B.格蘭杰因果檢驗可以確定變量之間的單向或雙向因果關(guān)系C.觀察兩個變量的變化趨勢就能判斷因果關(guān)系D.不需要考慮其他潛在因素的影響,直接得出因果結(jié)論17、對于一個具有多個特征的數(shù)據(jù)集,若要進(jìn)行特征選擇,以下哪種方法是基于特征重要性評估的?()A.遞歸特征消除B.基于隨機(jī)森林的特征重要性評估C.基于LASSO回歸的特征選擇D.以上都是18、在數(shù)據(jù)分析中,若要研究變量之間的因果關(guān)系,以下哪種方法可能會被采用?()A.實驗設(shè)計B.格蘭杰因果檢驗C.結(jié)構(gòu)方程模型D.以上都有可能19、假設(shè)要分析兩個變量之間是否存在因果關(guān)系,以下哪種方法較為合適?()A.相關(guān)性分析B.格蘭杰因果檢驗C.回歸分析D.以上都不是20、數(shù)據(jù)分析中的文本分類任務(wù)可以使用多種機(jī)器學(xué)習(xí)算法。假設(shè)我們要對大量的新聞文章進(jìn)行分類,以下哪種算法在處理文本分類時可能需要更多的特征工程工作?()A.決策樹B.支持向量機(jī)C.樸素貝葉斯D.隨機(jī)森林二、簡答題(本大題共5個小題,共25分)1、(本題5分)在進(jìn)行分類任務(wù)時,對比決策樹、隨機(jī)森林和支持向量機(jī)等算法的優(yōu)缺點(diǎn),以及如何根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的分類算法。2、(本題5分)解釋數(shù)據(jù)可視化中的動態(tài)可視化,說明如何通過動態(tài)效果展示數(shù)據(jù)隨時間或其他變量的變化,舉例說明其應(yīng)用場景。3、(本題5分)在進(jìn)行數(shù)據(jù)分析時,如何處理數(shù)據(jù)中的語義歧義?闡述自然語言處理中的消歧方法和應(yīng)用。4、(本題5分)描述數(shù)據(jù)倉庫中的數(shù)據(jù)立方體技術(shù),說明其原理和在多維數(shù)據(jù)分析中的作用,并舉例說明如何使用數(shù)據(jù)立方體進(jìn)行快速查詢和分析。5、(本題5分)解釋數(shù)據(jù)可視化中的可視化編碼原則,說明如何通過合適的編碼方式傳達(dá)數(shù)據(jù)的信息,避免視覺混淆。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)某社交平臺擁有用戶的注冊信息、發(fā)布內(nèi)容、關(guān)注關(guān)系、互動行為等數(shù)據(jù)。研究如何基于這些數(shù)據(jù)進(jìn)行用戶畫像,以便為廣告投放提供精準(zhǔn)定位。2、(本題5分)一家汽車銷售公司擁有車輛銷售數(shù)據(jù),包括車型、價格、顏色、銷售地點(diǎn)、購買者年齡等。探究不同年齡層購買者對車型和顏色的選擇偏好以及價格敏感度。3、(本題5分)某超市收集了不同季節(jié)、節(jié)假日的商品銷售數(shù)據(jù)和顧客消費(fèi)習(xí)慣。探討怎樣利用這些數(shù)據(jù)進(jìn)行精準(zhǔn)的庫存管理和促銷活動策劃。4、(本題5分)一家手機(jī)應(yīng)用商店記錄了應(yīng)用的下載數(shù)據(jù),包括應(yīng)用類型、下載量、評分、更新頻率等。探討不同類型應(yīng)用的下載量與評分的相關(guān)性以及更新頻率的作用。5、(本題5分)某游戲公司記錄了玩家的游戲行為、充值記錄、在線時長等數(shù)據(jù)。探討如何利用這些數(shù)據(jù)提高游戲的用戶留存率和盈利能力。四、論述題(本大題共3個小題,共30分)1、(本題10分)在醫(yī)療領(lǐng)域,電子病歷和醫(yī)療影像等數(shù)據(jù)不斷積累。探討如何利用數(shù)據(jù)分析方法,如數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)算法等,對這些數(shù)據(jù)進(jìn)行分析,以輔助疾病診斷、預(yù)測疾病發(fā)展趨勢,提高醫(yī)療質(zhì)量和效率,并且研究在數(shù)據(jù)隱私保護(hù)和醫(yī)療數(shù)據(jù)復(fù)雜性方面所面臨的問題及應(yīng)對策略。2、(本題10分)在交通運(yùn)輸領(lǐng)域,公交地鐵的刷卡數(shù)據(jù)、道路監(jiān)控數(shù)據(jù)等不斷豐富。分析如何運(yùn)用數(shù)據(jù)分析手段,如出行需求預(yù)測、交通流量優(yōu)化等,改善城市

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論