陜西國際商貿(mào)學(xué)院《大數(shù)據(jù)分析及市場應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
陜西國際商貿(mào)學(xué)院《大數(shù)據(jù)分析及市場應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
陜西國際商貿(mào)學(xué)院《大數(shù)據(jù)分析及市場應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
陜西國際商貿(mào)學(xué)院《大數(shù)據(jù)分析及市場應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
陜西國際商貿(mào)學(xué)院《大數(shù)據(jù)分析及市場應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共2頁陜西國際商貿(mào)學(xué)院《大數(shù)據(jù)分析及市場應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在處理大規(guī)模的大數(shù)據(jù)集時(shí),常常需要對數(shù)據(jù)進(jìn)行清洗和預(yù)處理。假設(shè)一個(gè)包含了用戶購物行為的數(shù)據(jù)集,其中存在大量缺失值、重復(fù)數(shù)據(jù)和異常值。以下哪種數(shù)據(jù)清洗方法最適合處理這種情況,同時(shí)能夠最大程度地保留有用信息并提高數(shù)據(jù)質(zhì)量?()A.直接刪除包含缺失值、重復(fù)數(shù)據(jù)和異常值的記錄B.通過統(tǒng)計(jì)方法填充缺失值,去除重復(fù)數(shù)據(jù),并使用聚類算法識別和處理異常值C.對缺失值進(jìn)行隨機(jī)填充,保留重復(fù)數(shù)據(jù),忽略異常值D.不進(jìn)行任何處理,直接使用原始數(shù)據(jù)進(jìn)行分析2、大數(shù)據(jù)存儲技術(shù)有很多種,以下關(guān)于大數(shù)據(jù)存儲技術(shù)的描述中,錯(cuò)誤的是()。A.HDFS是一種分布式文件系統(tǒng),適用于存儲大規(guī)模數(shù)據(jù)B.NoSQL數(shù)據(jù)庫是一種非關(guān)系型數(shù)據(jù)庫,適用于存儲非結(jié)構(gòu)化數(shù)據(jù)C.NewSQL數(shù)據(jù)庫是一種新型的關(guān)系型數(shù)據(jù)庫,適用于存儲大規(guī)模結(jié)構(gòu)化數(shù)據(jù)D.大數(shù)據(jù)存儲技術(shù)只需要考慮存儲容量,不需要考慮存儲性能3、大數(shù)據(jù)分析方法包括描述性分析、診斷性分析、預(yù)測性分析和規(guī)范性分析等。以下對這些分析方法的描述,不正確的是()A.描述性分析主要是對數(shù)據(jù)進(jìn)行概括和總結(jié),提供數(shù)據(jù)的基本特征B.診斷性分析用于找出導(dǎo)致問題發(fā)生的原因C.預(yù)測性分析基于歷史數(shù)據(jù)預(yù)測未來的趨勢和結(jié)果D.規(guī)范性分析能夠直接給出解決問題的具體方案,無需人工干預(yù)4、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架發(fā)揮著重要作用。以下關(guān)于Hadoop生態(tài)系統(tǒng)中的MapReduce框架和Spark框架的比較,哪一項(xiàng)是錯(cuò)誤的?()A.MapReduce處理數(shù)據(jù)的速度通常比Spark慢B.Spark比MapReduce更適合進(jìn)行迭代計(jì)算C.MapReduce的容錯(cuò)性比Spark更強(qiáng)D.Spark能夠在內(nèi)存中緩存數(shù)據(jù),而MapReduce通常需要頻繁讀寫磁盤5、在大數(shù)據(jù)的背景下,數(shù)據(jù)倉庫和數(shù)據(jù)湖的概念被廣泛提及。假設(shè)一個(gè)企業(yè)需要存儲和分析大量的歷史數(shù)據(jù)和實(shí)時(shí)數(shù)據(jù)。以下哪種數(shù)據(jù)存儲方式最適合這種需求?()A.數(shù)據(jù)倉庫B.數(shù)據(jù)湖C.兩者結(jié)合D.以上方式都不適合6、大數(shù)據(jù)在市場營銷中的應(yīng)用能夠帶來諸多好處,以下哪一項(xiàng)不是其帶來的好處?()A.更精準(zhǔn)的市場細(xì)分B.更有效的客戶關(guān)系管理C.降低營銷成本D.消除市場競爭7、在處理大規(guī)模圖像數(shù)據(jù)時(shí),常常需要進(jìn)行特征提取和分類。假設(shè)有一個(gè)包含數(shù)百萬張圖片的數(shù)據(jù)集,需要快速準(zhǔn)確地識別圖片中的物體。以下哪種技術(shù)或算法在圖像大數(shù)據(jù)處理中應(yīng)用廣泛?()A.決策樹B.隨機(jī)森林C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯8、大數(shù)據(jù)中的異常檢測用于發(fā)現(xiàn)數(shù)據(jù)中的異常模式或離群點(diǎn)。以下關(guān)于異常檢測方法的描述,哪一個(gè)是不準(zhǔn)確的?()A.基于統(tǒng)計(jì)的方法通過計(jì)算數(shù)據(jù)的均值、方差等統(tǒng)計(jì)量來判斷異常B.基于距離的方法根據(jù)數(shù)據(jù)點(diǎn)之間的距離來識別離群點(diǎn)C.基于密度的方法通過計(jì)算數(shù)據(jù)點(diǎn)的局部密度來檢測異常D.異常檢測的結(jié)果總是明確和準(zhǔn)確的,不存在誤判的情況9、在大數(shù)據(jù)存儲方面,NoSQL數(shù)據(jù)庫與傳統(tǒng)的關(guān)系型數(shù)據(jù)庫相比,具有一些獨(dú)特的優(yōu)勢。以下哪項(xiàng)不是NoSQL數(shù)據(jù)庫的主要特點(diǎn)?()A.支持復(fù)雜的關(guān)聯(lián)查詢B.靈活的數(shù)據(jù)模型C.良好的可擴(kuò)展性D.高并發(fā)讀寫性能10、大數(shù)據(jù)存儲系統(tǒng)通常需要具備可擴(kuò)展性、高性能和高可靠性等特點(diǎn)。以下哪種存儲技術(shù)在處理大規(guī)模數(shù)據(jù)時(shí)具有較好的可擴(kuò)展性?()A.關(guān)系型數(shù)據(jù)庫,如MySQLB.分布式文件系統(tǒng),如HDFSC.傳統(tǒng)的集中式存儲架構(gòu)D.本地磁盤存儲11、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),考慮到系統(tǒng)的可擴(kuò)展性和容錯(cuò)性,以下哪種分布式計(jì)算框架通常是首選?()A.MapReduceB.MPIC.StormD.TensorFlow12、在大數(shù)據(jù)項(xiàng)目實(shí)施過程中,以下哪個(gè)階段需要與業(yè)務(wù)部門進(jìn)行密切溝通和協(xié)作?()A.需求分析B.技術(shù)選型C.系統(tǒng)測試D.上線運(yùn)維13、在大數(shù)據(jù)存儲中,為了提高數(shù)據(jù)的讀寫性能,通常會采用分布式存儲架構(gòu)。以下關(guān)于分布式存儲的描述,錯(cuò)誤的是?()A.數(shù)據(jù)被分散存儲在多個(gè)節(jié)點(diǎn)上B.可以通過增加節(jié)點(diǎn)來擴(kuò)展存儲容量C.節(jié)點(diǎn)之間的通信開銷對性能影響較小D.數(shù)據(jù)的一致性維護(hù)是一個(gè)重要問題14、在大數(shù)據(jù)安全領(lǐng)域,訪問控制是保護(hù)數(shù)據(jù)的重要手段。以下關(guān)于訪問控制的描述,錯(cuò)誤的是?()A.訪問控制可以防止未經(jīng)授權(quán)的用戶訪問數(shù)據(jù)B.基于角色的訪問控制是一種常見的訪問控制策略C.訪問控制只適用于數(shù)據(jù)庫中的數(shù)據(jù),對文件系統(tǒng)中的數(shù)據(jù)無效D.訪問控制需要根據(jù)數(shù)據(jù)的敏感程度設(shè)置不同的權(quán)限級別15、在大數(shù)據(jù)處理中,數(shù)據(jù)壓縮可以節(jié)省存儲空間和傳輸帶寬。假設(shè)有一個(gè)大規(guī)模的數(shù)值型數(shù)據(jù)集,以下哪種壓縮算法可能最適合?()A.GZIPB.BZIP2C.RLE(Run-LengthEncoding)D.LZ7716、大數(shù)據(jù)在電商物流配送中的應(yīng)用能夠優(yōu)化配送效率,以下關(guān)于大數(shù)據(jù)在電商物流中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以根據(jù)訂單數(shù)據(jù)進(jìn)行智能倉儲管理B.有助于優(yōu)化配送路線規(guī)劃,減少配送時(shí)間C.大數(shù)據(jù)在電商物流配送中的應(yīng)用只關(guān)注配送環(huán)節(jié),對倉儲環(huán)節(jié)沒有影響D.能夠?qū)崟r(shí)監(jiān)控物流車輛的位置和狀態(tài)17、在進(jìn)行大數(shù)據(jù)分析時(shí),常常需要用到數(shù)據(jù)挖掘算法。以下關(guān)于決策樹算法和聚類算法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.決策樹算法可以用于分類和預(yù)測,聚類算法主要用于將數(shù)據(jù)分組B.決策樹算法生成的結(jié)果易于理解和解釋,聚類算法的結(jié)果相對較難解釋C.決策樹算法需要事先指定類別標(biāo)簽,聚類算法不需要D.聚類算法的計(jì)算復(fù)雜度通常比決策樹算法低18、大數(shù)據(jù)技術(shù)在智能交通系統(tǒng)中發(fā)揮著重要作用。假設(shè)一個(gè)城市的交通管理部門想要利用大數(shù)據(jù)優(yōu)化交通信號燈控制。以下哪種數(shù)據(jù)來源對實(shí)現(xiàn)這一目標(biāo)最有幫助?()A.車輛的GPS定位數(shù)據(jù)B.道路攝像頭拍攝的圖像數(shù)據(jù)C.公交卡的刷卡記錄D.以上數(shù)據(jù)結(jié)合使用,綜合分析交通狀況19、在大數(shù)據(jù)的情感分析中,除了文本內(nèi)容,還可以考慮哪些因素來提高分析的準(zhǔn)確性?()A.作者的社交關(guān)系B.文本發(fā)布的時(shí)間C.文本的長度D.以上因素都可能對提高情感分析的準(zhǔn)確性有幫助20、大數(shù)據(jù)在金融領(lǐng)域有廣泛的應(yīng)用,以下關(guān)于大數(shù)據(jù)在金融領(lǐng)域的應(yīng)用描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可以用于風(fēng)險(xiǎn)評估和信用評級,提高金融機(jī)構(gòu)的風(fēng)險(xiǎn)管理能力B.大數(shù)據(jù)可以用于金融市場預(yù)測和投資決策,提高金融機(jī)構(gòu)的盈利能力C.大數(shù)據(jù)可以用于金融監(jiān)管,加強(qiáng)金融市場的監(jiān)管力度D.大數(shù)據(jù)在金融領(lǐng)域的應(yīng)用只局限于傳統(tǒng)金融機(jī)構(gòu),不能應(yīng)用于互聯(lián)網(wǎng)金融二、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)大數(shù)據(jù)對沙漠化治理的幫助是什么?2、(本題5分)在大數(shù)據(jù)中,如何進(jìn)行數(shù)據(jù)的元建模?3、(本題5分)說明大數(shù)據(jù)在供應(yīng)鏈質(zhì)量控制中的應(yīng)用。4、(本題5分)大數(shù)據(jù)對心理健康評估的幫助是什么?5、(本題5分)簡述大數(shù)據(jù)如何預(yù)測物流需求。三、綜合分析題(本大題共5個(gè)小題,共25分)1、(本題5分)探討大數(shù)據(jù)在法律領(lǐng)域的應(yīng)用,如案例分析、法律預(yù)測,以及數(shù)據(jù)的合法性和合規(guī)性。2、(本題5分)綜合研究大數(shù)據(jù)在銅業(yè)的應(yīng)用,如銅礦資源評估、銅產(chǎn)品需求分析,以及銅加工工藝的改進(jìn)。3、(本題5分)探討大數(shù)據(jù)在寵物行業(yè)的應(yīng)用,如寵物用品銷售分析、寵物健康監(jiān)測,以及寵物服務(wù)的個(gè)性化推薦。4、(本題5分)綜合研究大數(shù)據(jù)在電玩城的應(yīng)用,如游戲設(shè)備受歡迎程度分析、玩家消費(fèi)行為研究,以及電玩城活動的策劃。5、(本題5分)分析大數(shù)據(jù)在體育行業(yè)的應(yīng)用,如運(yùn)動員表現(xiàn)評估、賽事預(yù)測,以及數(shù)據(jù)驅(qū)動的訓(xùn)練方法改進(jìn)。四、編程題(本大題共3個(gè)小題,共30分)1、(本題10分)利用Spark框架,讀取一個(gè)包含電商銷售數(shù)據(jù)的文件,分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論