湖北第二師范學(xué)院《實(shí)時(shí)渲染技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁(yè)
湖北第二師范學(xué)院《實(shí)時(shí)渲染技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁(yè)
湖北第二師范學(xué)院《實(shí)時(shí)渲染技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁(yè)
湖北第二師范學(xué)院《實(shí)時(shí)渲染技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁(yè)
湖北第二師范學(xué)院《實(shí)時(shí)渲染技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共2頁(yè)湖北第二師范學(xué)院《實(shí)時(shí)渲染技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在處理自然語(yǔ)言處理任務(wù)時(shí),詞嵌入(WordEmbedding)是一種常用的技術(shù)。假設(shè)我們要對(duì)一段文本進(jìn)行情感分析。以下關(guān)于詞嵌入的描述,哪一項(xiàng)是錯(cuò)誤的?()A.詞嵌入將單詞表示為低維實(shí)數(shù)向量,捕捉單詞之間的語(yǔ)義關(guān)系B.Word2Vec和GloVe是常見(jiàn)的詞嵌入模型,可以學(xué)習(xí)到單詞的分布式表示C.詞嵌入向量的維度通常是固定的,且不同單詞的向量維度必須相同D.詞嵌入可以直接用于文本分類任務(wù),無(wú)需進(jìn)行進(jìn)一步的特征工程2、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),除了準(zhǔn)確性等常見(jiàn)指標(biāo)外,還可以使用混淆矩陣來(lái)更詳細(xì)地分析模型的性能。對(duì)于一個(gè)二分類問(wèn)題,混淆矩陣包含了真陽(yáng)性(TP)、真陰性(TN)、假陽(yáng)性(FP)和假陰性(FN)等信息。以下哪個(gè)指標(biāo)可以通過(guò)混淆矩陣計(jì)算得到,并且對(duì)于不平衡數(shù)據(jù)集的評(píng)估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)3、某機(jī)器學(xué)習(xí)項(xiàng)目旨在識(shí)別手寫數(shù)字圖像。數(shù)據(jù)集包含了各種不同風(fēng)格和質(zhì)量的手寫數(shù)字。為了提高模型的魯棒性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可以考慮使用?()A.隨機(jī)裁剪B.隨機(jī)旋轉(zhuǎn)C.隨機(jī)添加噪聲D.以上技術(shù)都可以4、假設(shè)正在進(jìn)行一項(xiàng)時(shí)間序列預(yù)測(cè)任務(wù),例如預(yù)測(cè)股票價(jià)格的走勢(shì)。在選擇合適的模型時(shí),需要考慮時(shí)間序列的特點(diǎn),如趨勢(shì)、季節(jié)性和噪聲等。以下哪種模型在處理時(shí)間序列數(shù)據(jù)時(shí)具有較強(qiáng)的能力?()A.線性回歸模型,簡(jiǎn)單直接,易于解釋B.決策樹(shù)模型,能夠處理非線性關(guān)系C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),能夠捕捉時(shí)間序列中的長(zhǎng)期依賴關(guān)系D.支持向量回歸(SVR),對(duì)小樣本數(shù)據(jù)效果較好5、假設(shè)要對(duì)一個(gè)時(shí)間序列數(shù)據(jù)進(jìn)行預(yù)測(cè),例如股票價(jià)格的走勢(shì)。數(shù)據(jù)具有明顯的趨勢(shì)和季節(jié)性特征。以下哪種時(shí)間序列預(yù)測(cè)方法可能較為合適?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.以上方法都可能適用,取決于具體數(shù)據(jù)特點(diǎn)6、在一個(gè)強(qiáng)化學(xué)習(xí)場(chǎng)景中,智能體在探索新的策略和利用已有的經(jīng)驗(yàn)之間需要進(jìn)行平衡。如果智能體過(guò)于傾向于探索,可能會(huì)導(dǎo)致效率低下;如果過(guò)于傾向于利用已有經(jīng)驗(yàn),可能會(huì)錯(cuò)過(guò)更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)7、當(dāng)使用樸素貝葉斯算法進(jìn)行分類時(shí),假設(shè)特征之間相互獨(dú)立。但在實(shí)際數(shù)據(jù)中,如果特征之間存在一定的相關(guān)性,這會(huì)對(duì)算法的性能產(chǎn)生怎樣的影響()A.提高分類準(zhǔn)確性B.降低分類準(zhǔn)確性C.對(duì)性能沒(méi)有影響D.可能提高也可能降低準(zhǔn)確性,取決于數(shù)據(jù)8、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)通常應(yīng)用于()A.輸入層B.隱藏層C.輸出層D.以上都可以9、在機(jī)器學(xué)習(xí)中,交叉驗(yàn)證是一種常用的評(píng)估模型性能和選擇超參數(shù)的方法。假設(shè)我們正在使用K折交叉驗(yàn)證來(lái)評(píng)估一個(gè)分類模型。以下關(guān)于交叉驗(yàn)證的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.將數(shù)據(jù)集隨機(jī)分成K個(gè)大小相等的子集,依次選擇其中一個(gè)子集作為測(cè)試集,其余子集作為訓(xùn)練集B.通過(guò)計(jì)算K次實(shí)驗(yàn)的平均準(zhǔn)確率等指標(biāo)來(lái)評(píng)估模型的性能C.可以在交叉驗(yàn)證過(guò)程中同時(shí)調(diào)整多個(gè)超參數(shù),找到最優(yōu)的超參數(shù)組合D.交叉驗(yàn)證只適用于小數(shù)據(jù)集,對(duì)于大數(shù)據(jù)集計(jì)算成本過(guò)高,不適用10、在一個(gè)文本分類任務(wù)中,使用了樸素貝葉斯算法。樸素貝葉斯算法基于貝葉斯定理,假設(shè)特征之間相互獨(dú)立。然而,在實(shí)際的文本數(shù)據(jù)中,特征之間往往存在一定的相關(guān)性。以下關(guān)于樸素貝葉斯算法在文本分類中的應(yīng)用,哪一項(xiàng)是正確的?()A.由于特征不獨(dú)立的假設(shè),樸素貝葉斯算法在文本分類中效果很差B.盡管存在特征相關(guān)性,樸素貝葉斯算法在許多文本分類任務(wù)中仍然表現(xiàn)良好C.為了提高性能,需要對(duì)文本數(shù)據(jù)進(jìn)行特殊處理,使其滿足特征獨(dú)立的假設(shè)D.樸素貝葉斯算法只適用于特征完全獨(dú)立的數(shù)據(jù)集,不適用于文本分類11、在構(gòu)建一個(gè)用于圖像識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時(shí),需要考慮許多因素。假設(shè)我們正在設(shè)計(jì)一個(gè)用于識(shí)別手寫數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計(jì)的描述,哪一項(xiàng)是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識(shí)別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計(jì)算復(fù)雜度,同時(shí)保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強(qiáng)模型的表達(dá)能力12、考慮在一個(gè)圖像識(shí)別任務(wù)中,需要對(duì)不同的物體進(jìn)行分類,例如貓、狗、汽車等。為了提高模型的準(zhǔn)確性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可能是有效的()A.隨機(jī)旋轉(zhuǎn)圖像B.增加圖像的亮度C.對(duì)圖像進(jìn)行模糊處理D.減小圖像的分辨率13、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見(jiàn)的學(xué)習(xí)方式。假設(shè)我們要使用監(jiān)督學(xué)習(xí)算法來(lái)預(yù)測(cè)房?jī)r(jià),給定了大量的房屋特征(如面積、房間數(shù)量、地理位置等)以及對(duì)應(yīng)的房?jī)r(jià)數(shù)據(jù)。以下關(guān)于監(jiān)督學(xué)習(xí)在這個(gè)任務(wù)中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以使用線性回歸算法,建立房屋特征與房?jī)r(jià)之間的線性關(guān)系模型B.決策樹(shù)算法可以根據(jù)房屋特征的不同取值來(lái)劃分決策節(jié)點(diǎn),最終預(yù)測(cè)房?jī)r(jià)C.支持向量機(jī)通過(guò)尋找一個(gè)最優(yōu)的超平面來(lái)對(duì)房屋數(shù)據(jù)進(jìn)行分類,從而預(yù)測(cè)房?jī)r(jià)D.無(wú)監(jiān)督學(xué)習(xí)算法如K-Means聚類算法可以直接用于房?jī)r(jià)的預(yù)測(cè),無(wú)需對(duì)數(shù)據(jù)進(jìn)行標(biāo)注14、在一個(gè)異常檢測(cè)的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點(diǎn)。以下哪種異常檢測(cè)算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點(diǎn),但對(duì)參數(shù)敏感B.一類支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對(duì)數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類的異常檢測(cè),將遠(yuǎn)離聚類中心的點(diǎn)視為異常,但聚類效果對(duì)結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的方法或進(jìn)行組合15、假設(shè)要開(kāi)發(fā)一個(gè)自然語(yǔ)言處理的系統(tǒng),用于文本情感分析,判斷一段文字是積極、消極還是中性??紤]到文本的多樣性和語(yǔ)義的復(fù)雜性。以下哪種技術(shù)和方法可能是最有效的?()A.基于詞袋模型的樸素貝葉斯分類器,計(jì)算簡(jiǎn)單,但忽略了詞序和上下文信息B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),能夠處理序列數(shù)據(jù),但可能存在梯度消失或爆炸問(wèn)題C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長(zhǎng)期依賴問(wèn)題,對(duì)長(zhǎng)文本處理能力較強(qiáng),但模型較復(fù)雜D.基于Transformer架構(gòu)的預(yù)訓(xùn)練語(yǔ)言模型,如BERT或GPT,具有強(qiáng)大的語(yǔ)言理解能力,但需要大量的計(jì)算資源和數(shù)據(jù)進(jìn)行微調(diào)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行故障診斷。2、(本題5分)解釋Q-learning算法的基本概念。3、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)中的聚類算法及其分類。4、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行冰川變化監(jiān)測(cè)。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)結(jié)合實(shí)際案例,論述機(jī)器學(xué)習(xí)在金融市場(chǎng)風(fēng)險(xiǎn)管理中的應(yīng)用。探討風(fēng)險(xiǎn)度量、風(fēng)險(xiǎn)模型建立、風(fēng)險(xiǎn)預(yù)警系統(tǒng)等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。2、(本題5分)論述在機(jī)器學(xué)習(xí)中,如何處理具有時(shí)空相關(guān)性的數(shù)據(jù)。探討適合時(shí)空數(shù)據(jù)的模型結(jié)構(gòu)和訓(xùn)練方法。3、(本題5分)機(jī)器學(xué)習(xí)中的自動(dòng)編碼器有哪些變體?結(jié)合具體任務(wù),分析其在數(shù)據(jù)降維和特征學(xué)習(xí)中的優(yōu)勢(shì)。4、(本題5分)分析深度學(xué)習(xí)中的注意力機(jī)制的原理和應(yīng)用,討論其在自然語(yǔ)言處理和計(jì)算機(jī)視覺(jué)中的作用。5、(本題5分)分析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論