難點(diǎn)詳解天津南開(kāi)大附屬中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測(cè)試試題(含詳細(xì)解析)_第1頁(yè)
難點(diǎn)詳解天津南開(kāi)大附屬中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測(cè)試試題(含詳細(xì)解析)_第2頁(yè)
難點(diǎn)詳解天津南開(kāi)大附屬中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測(cè)試試題(含詳細(xì)解析)_第3頁(yè)
難點(diǎn)詳解天津南開(kāi)大附屬中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測(cè)試試題(含詳細(xì)解析)_第4頁(yè)
難點(diǎn)詳解天津南開(kāi)大附屬中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測(cè)試試題(含詳細(xì)解析)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

天津南開(kāi)大附屬中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、下列各組線(xiàn)段中,能構(gòu)成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、62、以下列長(zhǎng)度的各組線(xiàn)段為邊,能組成三角形的是()A.,, B.,,C.,, D.,,3、已知三角形的兩邊長(zhǎng)分別是3cm和7cm,則下列長(zhǎng)度的線(xiàn)段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm4、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點(diǎn),在A(yíng)B上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°5、有兩根長(zhǎng)度分別為7cm,11cm的木棒,下面為第三根的長(zhǎng)度,則可圍成一個(gè)三角形框架的是()A.3cm B.4cm C.9cm D.19cm6、如圖,為估計(jì)池塘岸邊A、B兩點(diǎn)的距離,小方在池塘的一側(cè)選取一點(diǎn)O,OA=15米,OB=10米,A、B間的距離不可能是()A.5米 B.10米 C.15米 D.20米7、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個(gè)仍無(wú)法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE8、在下列長(zhǎng)度的四根木棒中,能與3cm,9cm的兩根木棒首尾順次相接釘成一個(gè)三角形的是()A.3cm B.6cm C.10cm D.12cm9、三根小木棒擺成一個(gè)三角形,其中兩根木棒的長(zhǎng)度分別是和,那么第三根小木棒的長(zhǎng)度不可能是()A. B. C. D.10、如圖,在中,已知點(diǎn),,分別為,,的中點(diǎn),且,則的面積是()A. B.1 C.5 D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,線(xiàn)段AC與BD相交于點(diǎn)O,∠A=∠D=90°,要證明△ABC≌△DCB,還需添加的一個(gè)條件是____________.(只需填一個(gè)條件即可)2、一個(gè)等腰三角形的一邊長(zhǎng)為2,另一邊長(zhǎng)為9,則它的周長(zhǎng)是________________.3、在新年聯(lián)歡會(huì)上,老師設(shè)計(jì)了“你說(shuō)我畫(huà)”的游戲.游戲規(guī)則如下:甲同學(xué)需要根據(jù)乙同學(xué)提供的三個(gè)條件畫(huà)出形狀和大小都確定的三角形.已知乙同學(xué)說(shuō)出的前兩個(gè)條件是“,”.現(xiàn)僅存下列三個(gè)條件:①;②;③.為了甲同學(xué)畫(huà)出形狀和大小都確定的,乙同學(xué)可以選擇的條件有:______.(填寫(xiě)序號(hào),寫(xiě)出所有正確答案)4、某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過(guò)河就測(cè)得河的寬度,他們是這樣做的:①在河流的一條岸邊B點(diǎn),選對(duì)岸正對(duì)的一棵樹(shù)A;②沿河岸直走20米有一樹(shù)C,繼續(xù)前行20米到達(dá)D處;③從D處沿河岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹(shù)正好被C樹(shù)遮擋住的E處停止行走;④測(cè)得DE的長(zhǎng)為5米;則河的寬度為_(kāi)____米.5、如圖,∠AOB=90°,OA=OB,直線(xiàn)l經(jīng)過(guò)點(diǎn)O,分別過(guò)A、B兩點(diǎn)作AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,若AC=5,BD=3,則CD=_______.6、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個(gè)條件是____.7、如圖,已知,請(qǐng)?zhí)砑右粋€(gè)條件,使得,則添加的條件可以為_(kāi)__(只填寫(xiě)一個(gè)即可).8、如圖,點(diǎn)F,A,D,C在同一條直線(xiàn)上,,,,則AC等于_____.9、如圖,在△ABC中,AD是BC邊上的中線(xiàn),BE是△ABD中AD邊上的中線(xiàn),若△ABC的面積是80,則△ABE的面積是________.10、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線(xiàn)交于點(diǎn)P,點(diǎn)E、F分別在邊BC、AC上,且都不與點(diǎn)C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時(shí),則△CEF的周長(zhǎng)為_(kāi)____.三、解答題(6小題,每小題10分,共計(jì)60分)1、(1)如圖1,已知中,90°,,直線(xiàn)經(jīng)過(guò)點(diǎn)直線(xiàn),直線(xiàn),垂足分別為點(diǎn).求證:.證明:(2)如圖2,將(1)中的條件改為:在中,三點(diǎn)都在直線(xiàn)上,并且有.請(qǐng)寫(xiě)出三條線(xiàn)段的數(shù)量關(guān)系,并說(shuō)明理由.2、如圖,點(diǎn)B,F(xiàn),C,E在一條直線(xiàn)上,AB=DE,∠B=∠E,BF=CE.求證:AC=DF.3、在解決線(xiàn)段數(shù)量關(guān)系問(wèn)題中,如果條件中有角平分線(xiàn),經(jīng)常采用下面構(gòu)造全等三角形的解決思路,如:在圖1中,若C是∠MON的平分線(xiàn)OP上一點(diǎn),點(diǎn)A在OM上,此時(shí),在ON上截取OB=OA,連接BC,根據(jù)三角形全等判定(SAS),容易構(gòu)造出全等三角形OBC和OAC,參考上面的方法,解答下列問(wèn)題,如圖2,在非等邊ABC中,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線(xiàn),且AD、CE交于點(diǎn)F.(1)求∠AFC的度數(shù);(2)求證:AC=AE+CD.4、下面是“作一個(gè)角的平分線(xiàn)”的尺規(guī)作圖過(guò)程.已知:如圖,鈍角.求作:射線(xiàn)OC,使.作法:如圖,①在射線(xiàn)OA上任取一點(diǎn)D;②以點(diǎn)О為圓心,OD長(zhǎng)為半徑作弧,交OB于點(diǎn)E;③分別以點(diǎn)D,E為圓心,大于長(zhǎng)為半徑作弧,在內(nèi),兩弧相交于點(diǎn)C;④作射線(xiàn)OC.則OC為所求作的射線(xiàn).完成下面的證明.證明:連接CD,CE由作圖步驟②可知______.由作圖步驟③可知______.∵,∴.∴(________)(填推理的依據(jù)).5、如圖,直角坐標(biāo)系中,點(diǎn)B(a,0),點(diǎn)C(0,b),點(diǎn)A在第一象限.若a,b滿(mǎn)足(a?t)2+|b?t|=0(t>0).(1)證明:OB=OC;(2)如圖1,連接AB,過(guò)A作AD⊥AB交y軸于D,在射線(xiàn)AD上截取AE=AB,連接CE,F(xiàn)是CE的中點(diǎn),連接AF,OA,當(dāng)點(diǎn)A在第一象限內(nèi)運(yùn)動(dòng)(AD不過(guò)點(diǎn)C)時(shí),證明:∠OAF的大小不變;(3)如圖2,B′與B關(guān)于y軸對(duì)稱(chēng),M在線(xiàn)段BC上,N在CB′的延長(zhǎng)線(xiàn)上,且BM=NB′,連接MN交x軸于點(diǎn)T,過(guò)T作TQ⊥MN交y軸于點(diǎn)Q,當(dāng)t=2時(shí),求點(diǎn)Q的坐標(biāo).6、如圖,點(diǎn)E、B在線(xiàn)段AB上,AE=DB,BC=EF,BC∥EF,求證:AC=DF.-參考答案-一、單選題1、C【分析】根據(jù)三角形的三邊關(guān)系定理逐項(xiàng)判斷即可得.【詳解】解:三角形的三邊關(guān)系定理:任意兩邊之和大于第三邊.A、,不能構(gòu)成三角形,此項(xiàng)不符題意;B、,不能構(gòu)成三角形,此項(xiàng)不符題意;C、,能構(gòu)成三角形,此項(xiàng)符合題意;D、,不能構(gòu)成三角形,此項(xiàng)不符題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握三角形的三邊關(guān)系定理是解題關(guān)鍵.2、C【分析】根據(jù)三角形三條邊的關(guān)系計(jì)算即可.【詳解】解:A.∵2+4=6,∴,,不能組成三角形;B.∵2+5<9,∴,,不能組成三角形;C.∵7+8>10,∴,,能組成三角形;D.∵6+6<13,∴,,不能組成三角形;故選C.【點(diǎn)睛】本題考查了三角形三條邊的關(guān)系,熟練掌握三角形三條邊的關(guān)系是解答本題的關(guān)鍵.三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.3、C【分析】設(shè)三角形第三邊的長(zhǎng)為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個(gè)選項(xiàng)中,只有選項(xiàng)C符合題意,故選:C.【點(diǎn)睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類(lèi)求三角形第三邊的范圍的題,實(shí)際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.4、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質(zhì)可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),掌握全等三角形的判定定理與性質(zhì)是解題的關(guān)鍵.5、C【分析】已知兩邊,則第三邊的長(zhǎng)度應(yīng)是大于兩邊的差且小于兩邊的和,這樣就可求出第三邊長(zhǎng)的范圍.【詳解】解:依題意得:11﹣7<x<7+11,即4<x<18,9cm適合.故選:C.【點(diǎn)睛】本題考查三角形三邊關(guān)系,是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.6、A【分析】根據(jù)三角形的三邊關(guān)系得出5<AB<25,根據(jù)AB的范圍判斷即可.【詳解】解:連接AB,根據(jù)三角形的三邊關(guān)系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B間的距離在5和25之間,∴A、B間的距離不可能是5米;故選:A.【點(diǎn)睛】本題主要考查對(duì)三角形的三邊關(guān)系定理的理解和掌握,能正確運(yùn)用三角形的三邊關(guān)系定理是解此題的關(guān)鍵.7、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個(gè)判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項(xiàng)符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;故選:A.【點(diǎn)睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.8、C【分析】設(shè)第三根木棒的長(zhǎng)度為cm,再確定三角形第三邊的范圍,再逐一分析各選項(xiàng)即可得到答案.【詳解】解:設(shè)第三根木棒的長(zhǎng)度為cm,則所以A,B,D不符合題意,C符合題意,故選C【點(diǎn)睛】本題考查的是三角形的三邊的關(guān)系,掌握“利用三角形的三邊關(guān)系確定第三邊的范圍”是解本題的關(guān)鍵.9、D【分析】設(shè)第三根木棒長(zhǎng)為x厘米,根據(jù)三角形的三邊關(guān)系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設(shè)第三根木棒長(zhǎng)為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點(diǎn)睛】此題主要考查了三角形的三邊關(guān)系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.10、B【分析】根據(jù)三角形面積公式由點(diǎn)為的中點(diǎn)得到,同理得到,則,然后再由點(diǎn)為的中點(diǎn)得到.【詳解】解:點(diǎn)為的中點(diǎn),,點(diǎn)為的中點(diǎn),,,點(diǎn)為的中點(diǎn),.故選:.【點(diǎn)睛】本題考查了三角形的中線(xiàn)與面積的關(guān)系,解題的關(guān)鍵是掌握是三角形的中線(xiàn)把三角形的面積平均分成兩半.二、填空題1、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根據(jù)全等三角形的判定條件求解即可.【詳解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL證明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS證明△ABC≌△DCB,故答案為:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【點(diǎn)睛】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.2、20【分析】題目給出等腰三角形有兩條邊長(zhǎng)為2和9,而沒(méi)有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗(yàn)證能否組成三角形.【詳解】解:分兩種情況:當(dāng)腰為2時(shí),2+2<9,所以不能構(gòu)成三角形;當(dāng)腰為9時(shí),2+9>9,所以能構(gòu)成三角形,周長(zhǎng)是:2+9+9=20.故答案為:20.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒(méi)有明確腰和底邊的題目一定要想到兩種情況,分類(lèi)進(jìn)行討論,還應(yīng)驗(yàn)證各種情況是否能構(gòu)成三角形進(jìn)行解答,這點(diǎn)非常重要,也是解題的關(guān)鍵.3、②【分析】根據(jù)兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等,即可求解.【詳解】解:①若選,是邊邊角,不能得到形狀和大小都確定的;②若選,是邊角邊,能得到形狀和大小都確定的;③若選,是邊邊角,不能得到形狀和大小都確定的;所以乙同學(xué)可以選擇的條件有②.故答案為:②【點(diǎn)睛】本題主要考查了全等三角形的判定,熟練掌握兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等是解題的關(guān)鍵.4、5【分析】將題目中的實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,利用全等三角形的判定方法證得兩個(gè)三角形全等即可得出答案.【詳解】解:由題意知,在和中,,,∴,即河的寬度是5米,故答案為:5.【點(diǎn)睛】題目主要考查全等三角形的應(yīng)用,熟練應(yīng)用全等三角形的判定定理和性質(zhì)是解題關(guān)鍵.5、2【分析】首先根據(jù)同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據(jù)全等三角形對(duì)應(yīng)邊相等得出AC=OD=5,OC=BD=3,根據(jù)線(xiàn)段之間的數(shù)量關(guān)系即可求出CD的長(zhǎng)度.【詳解】解:∵AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點(diǎn)睛】此題考查了全等三角形的性質(zhì)和判定,同角的余角相等,解題的關(guān)鍵是根據(jù)題意證明△ACO≌△ODB.6、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點(diǎn)睛】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定定理.7、或【分析】根據(jù)全等三角形的判定方法即可解決問(wèn)題.【詳解】解:由題意,,根據(jù),可以添加,使得,根據(jù),可以添加,使得.故答案為:或【點(diǎn)睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關(guān)鍵.8、6.5【分析】由全等三角形的性質(zhì)可得到AC=DF,從而推出AF=CD,再由,,求出,則.【詳解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案為:6.5.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),線(xiàn)段的和差,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì).9、20【分析】根據(jù)三角形的中線(xiàn)把三角形分成面積相等的兩部分,求出面積比,即可解答.【詳解】解:∵AD是BC上的中線(xiàn),∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD邊上的中線(xiàn),∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面積是80,∴S△ABE=×80=20.故答案為:20.【點(diǎn)睛】本題主要考查了三角形面積的求法,掌握三角形的中線(xiàn)將三角形分成面積相等的兩部分,是解答本題的關(guān)鍵.10、4【分析】根據(jù)題意過(guò)點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ,進(jìn)而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過(guò)點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長(zhǎng)=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長(zhǎng)為4,故答案為:4.【點(diǎn)睛】本題考查角平分線(xiàn)的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),構(gòu)造全等三角形解決問(wèn).三、解答題1、(1)證明見(jiàn)解析;(2),證明見(jiàn)解析【分析】(1)利用已知得出∠CAE=∠ABD,進(jìn)而利用AAS得出則△ABD≌△CAE,即可得出DE=BD+CE;(2)根據(jù)∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根據(jù)AAS證出△ADB≌△CEA,從而得出AE=BD,AD=CE,即可證出DE=BD+CE;【詳解】(1)DE=BD+CE.理由如下:如圖1,∵BD⊥,CE⊥,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2),理由如下:如圖2,∵∠BDA=∠AEC=∠BAC,∴∠DBA+∠BAD=∠BAD+∠CAE,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)綜合中的“一線(xiàn)三等角”模型:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對(duì)應(yīng)邊相等.也考查了等邊三角形的判定與性質(zhì).2、見(jiàn)解析【分析】先由BF=CE說(shuō)明BC=EF.然后運(yùn)用SAS證明△ABC≌△DEF,最后運(yùn)用全等三角形的性質(zhì)即可證明.【詳解】證明:∵BF=CE,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).∴AC=DF.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì),正確證明△ABC≌△DEF是解答本題的關(guān)鍵.3、(1)120°;(2)見(jiàn)詳解.【分析】(1)根據(jù)題意在A(yíng)C上截取AG=AE,連接FG,進(jìn)而根據(jù)角平分線(xiàn)的性質(zhì)和三角形內(nèi)角和180°進(jìn)行分析計(jì)算即可;(2)由題意在(1)基礎(chǔ)上根據(jù)平角等于180°推出∠CFG=60°,然后利用“角邊角”證明△CFG和△CFD全等,進(jìn)而根據(jù)全等三角形對(duì)應(yīng)邊相等可得FG=FD,從而得證.【詳解】解:(1)如圖,在A(yíng)C上截取AG=AE,連接FG.∵AD是∠BAC的平分線(xiàn),CE是∠BCA的平分線(xiàn),∴∠1=∠2,∠3=∠4∵∠B=60°∴∠BAC+∠ACB=120°,∴∠2+∠3=(∠BAC+∠ACB)=60°,∴∠AFC=180°-60°=120°;(2)∵∠AFE=∠CFD=∠AFG=60°,∴∠CFG=180°-∠CFD-∠AFG=60°,∴∠CFD=∠CFG,在△CFG和△CFD中,,∴△CFG≌△CFD(ASA),∴CG=CD,∴AC=AG+CG=AE+CD.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),角平分線(xiàn)的定義,三角形的內(nèi)角和定理,以及三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),根據(jù)所求角度正好等于60°得到角相等是解題的關(guān)鍵.4、OE;CE;全等三角形的對(duì)應(yīng)角相等【分析】根據(jù)圓的半徑相等可得OD=OE,CD=CE,再利用SSS可證明,從而根據(jù)全等三角形的性質(zhì)可得結(jié)論.【詳解】證明:連接CD,CE由作圖步驟②可知___OE___.由作圖步驟③可知__CE___.∵,∴.∴(__全等三角形對(duì)應(yīng)角相等__)故答案為:OE;

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論