




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個數(shù)為(
)A.1個 B.2個 C.3個 D.4個2、在同一坐標(biāo)系中,二次函數(shù)與一次函數(shù)的圖像可能是(
)A. B.C. D.3、在中,AC=4,BC=3,則cosA的值等于(
)A. B. C.或 D.或4、關(guān)于的方程有兩個不相等的實(shí)根、,若,則的最大值是(
)A.1 B. C. D.25、在平面直角坐標(biāo)系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應(yīng)的函數(shù)表達(dá)式為(
)A. B. C. D.6、如圖,菱形ABCD中,∠BAD=60°,AC、BD交于點(diǎn)O,E為CD延長線上的一點(diǎn),且CD=DE,連接BE分別交AC,AD于點(diǎn)F、G,連結(jié)OG、AE.則下列結(jié)論:①OG=AB;
②四邊形ABDE是菱形;③;其中正確的是(
)A.①② B.①③ C.②③ D.①②③二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,下面等式中正確的是(
)A. B.C. D.2、用一個2倍的放大鏡照一個△ABC,下列命題中不正確的是(
)A.△ABC放大后角是原來的2倍 B.△ABC放大后周長是原來的2倍C.△ABC放大后面積是原來的2倍 D.以上的命題都不對3、如圖所示,AB為斜坡,D是斜坡AB上一點(diǎn),斜坡AB的坡度為i,坡角為,于點(diǎn)C,下面正確的有(
)A. B.C. D.4、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點(diǎn)P是邊BC上的動點(diǎn),若△ABP與△CDP相似,則BP=(
)A.3.6B.C.D.2.45、在Rt△ABC中,∠C=90°,當(dāng)已知∠A和a時,求c,不能選擇的關(guān)系式是(
)A.c= B.c= C.c=a·tanA D.c=6、已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.下列說法正確的是(
)A.函數(shù)解析式為I= B.當(dāng)R=9Ω時,I=4AC.蓄電池的電壓是13V D.當(dāng)I≤10A時,R≥3.6Ω7、在△ABC中,∠C=90°,下列各式一定成立的是(
)A.a(chǎn)=b?cosA B.a(chǎn)=c?cosB C.c= D.a(chǎn)=b?tanA第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點(diǎn)D,若☉O的半徑為2,則CD的長為_____2、如圖,點(diǎn)P,A,B,C在同一平面內(nèi),點(diǎn)A,B,C在同一直線上,且PC⊥AC,在點(diǎn)A處測得點(diǎn)P在北偏東60°方向上,在點(diǎn)B處測得點(diǎn)P在北偏東30°方向上,若AP=12千米,則A,B兩點(diǎn)的距離為___千米.3、如圖,已知是⊙O的直徑,且,弦,點(diǎn)是弧上的點(diǎn),連接、,若,則的長為______.4、如圖,在RT△ABC中,,,,是斜邊上方一點(diǎn),連接,點(diǎn)是的中點(diǎn),垂直平分,交于點(diǎn),連接,交于點(diǎn),當(dāng)為直角三角形時,線段的長為________.5、若拋物線的圖像與軸有交點(diǎn),那么的取值范圍是________.6、如圖,拋物線與直線交于A(-1,P),B(3,q)兩點(diǎn),則不等式的解集是_____.7、二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如表格所示,那么它的圖象與x軸的另一個交點(diǎn)坐標(biāo)是_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),且,.(1)求拋物線的表達(dá)式;(2)點(diǎn)是拋物線上一點(diǎn).①在拋物線的對稱軸上,求作一點(diǎn),使得的周長最小,并寫出點(diǎn)的坐標(biāo);②連接并延長,過拋物線上一點(diǎn)(點(diǎn)不與點(diǎn)重合)作軸,垂足為,與射線交于點(diǎn),是否存在這樣的點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.2、計(jì)算:3、某商場購進(jìn)甲、乙兩種商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙兩種商品每箱各盈利多少元?(2)甲、乙兩種商品全部售完后,該商場又購進(jìn)一批甲商品,在原每箱盈利不變的前提下,平均每天可賣出100箱.如調(diào)整價格,每降價1元,平均每天可以多賣出20箱,那么當(dāng)降價多少元時,該商場利潤最大?最大利潤是多少?4、如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),連接.(1)求拋物線的解析式;(2)點(diǎn)在拋物線的對稱軸上,當(dāng)?shù)闹荛L最小時,點(diǎn)的坐標(biāo)為_____________;(3)點(diǎn)是第四象限內(nèi)拋物線上的動點(diǎn),連接和.求面積的最大值及此時點(diǎn)的坐標(biāo);(4)若點(diǎn)是對稱軸上的動點(diǎn),在拋物線上是否存在點(diǎn),使以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.5、已知二次函數(shù)().(1)求二次函數(shù)圖象的對稱軸;(2)若該二次函數(shù)的圖象開口向上,當(dāng)時,函數(shù)圖象的最高點(diǎn)為,最低點(diǎn)為,點(diǎn)的縱坐標(biāo)為,求點(diǎn)和點(diǎn)的坐標(biāo);(3)在(2)的條件下,對直線下方二次函數(shù)圖象上的一點(diǎn),若,求點(diǎn)的坐標(biāo).6、如圖,在△ABC中,D,E分別是AC,AB上的點(diǎn),∠ADE=∠B.△ABC的角平分線AF交DE于點(diǎn)G,交BC于點(diǎn)F.(1)求證:△ADG∽△ABF;(2)若,AF=6,求GF的長.-參考答案-一、單選題1、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項(xiàng)①錯誤;②把代入中得,所以②正確;③由時對應(yīng)的函數(shù)值,可得出,得到,由,,,得到,選項(xiàng)③正確;④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負(fù)半軸,∴,∴,①錯誤;②當(dāng)時,,∴,∵,∴,把代入中得,所以②正確;③當(dāng)時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項(xiàng)系數(shù)決定拋物線的開口方向和大小.當(dāng)時,拋物線向上開口;當(dāng)時,拋物線向下開口;一次項(xiàng)系數(shù)和二次項(xiàng)系數(shù)共同決定對稱軸的位置:當(dāng)與同號時,對稱軸在軸左;當(dāng)與異號時,對稱軸在軸右.常數(shù)項(xiàng)決定拋物線與軸交點(diǎn):拋物線與軸交于.拋物線與軸交點(diǎn)個數(shù)由判別式確定:時,拋物線與軸有2個交點(diǎn);時,拋物線與軸有1個交點(diǎn);時,拋物線與軸沒有交點(diǎn).2、C【解析】【分析】直線與拋物線聯(lián)立解方程組,若有解,則圖象有交點(diǎn),若無解,則圖象無交點(diǎn);根據(jù)二次函數(shù)的對稱軸在y左側(cè),a,b同號,對稱軸在y軸右側(cè)a,b異號,以及當(dāng)a大于0時開口向上,當(dāng)a小于0時開口向下,來分析二次函數(shù);同時在假定二次函數(shù)圖象正確的前提下,根據(jù)一次函數(shù)的一次項(xiàng)系數(shù)為正,圖象從左向右逐漸上升,一次項(xiàng)系數(shù)為負(fù),圖象從左向右逐漸下降;一次函數(shù)的常數(shù)項(xiàng)為正,交y軸于正半軸,常數(shù)項(xiàng)為負(fù),交y軸于負(fù)半軸.如此分析下來,二次函數(shù)與一次函數(shù)無矛盾者為正確答案.【詳解】解:由方程組得ax2=?a,∵a≠0∴x2=?1,該方程無實(shí)數(shù)根,故二次函數(shù)與一次函數(shù)圖象無交點(diǎn),排除B.A:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側(cè),則b<0;但是一次函數(shù)b為一次項(xiàng)系數(shù),圖象顯示從左向右上升,b>0,兩者矛盾,故A錯;C:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側(cè),則b<0;b為一次函數(shù)的一次項(xiàng)系數(shù),圖象顯示從左向右下降,b<0,兩者相符,故C正確;D:二次函數(shù)的圖象應(yīng)過原點(diǎn),此選項(xiàng)不符,故D錯.故選C.【考點(diǎn)】本題考查的是同一坐標(biāo)系中二次函數(shù)與一次函數(shù)的圖象問題,必須明確二次函數(shù)的開口方向與a的正負(fù)的關(guān)系,a,b的符號與對稱軸的位置關(guān)系,并結(jié)合一次函數(shù)的相關(guān)性質(zhì)進(jìn)行分析,本題中等難度偏上.3、C【解析】【分析】分兩種情況:①AB為斜邊;②AC為斜邊,根據(jù)勾股定理求出AB長,然后根據(jù)余弦定義即可求解.【詳解】由題意,存在兩種情況:①當(dāng)AB為斜邊時,∠C=90o,∵AC=4,BC=3,∴AB=,∴cosA=;②當(dāng)AC為斜邊時,∠B=90o,∵AC=4,BC=3,∴AB=,∴cosA=,綜上,cosA的值等于或,故選:C.【考點(diǎn)】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義,并注意分類討論是解答本題的關(guān)鍵.4、D【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,求得兩根之和和兩根之積,再根據(jù)兩根關(guān)系,求得系數(shù)的關(guān)系,代入代數(shù)式,配方法化簡求值即可.【詳解】解:由方程有兩個不相等的實(shí)根、可得,,,∵,可得,,即化簡得則故最大值為故選D【考點(diǎn)】此題考查了一元二次方程根與系數(shù)的關(guān)系,涉及了配方法求解代數(shù)式的最大值,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到系數(shù)的關(guān)系是解題的關(guān)鍵.5、B【解析】【分析】先求出平移后拋物線的頂點(diǎn)坐標(biāo),進(jìn)而即可得到答案.【詳解】解:∵的頂點(diǎn)坐標(biāo)為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點(diǎn)坐標(biāo)為(-2,1),∴所得拋物線對應(yīng)的函數(shù)表達(dá)式為,故選B【考點(diǎn)】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點(diǎn)坐標(biāo)或掌握“左加右減,上加下減”,是解題的關(guān)鍵.6、D【解析】【分析】證明四邊形ABDE為平行四邊形可得OB=OD,由菱形ABCD可得AG=DG,根據(jù)三角形中位線定理可判斷①;根據(jù)等邊三角形的性質(zhì)和判定可得△ABD為等邊三角形AB=BD,從而可判斷平行四邊形ABDE是菱形,由此判斷②;借助相似三角形的性質(zhì)和判定,三角形中線有關(guān)的面積問題可判斷③.【詳解】解:∵四邊形ABCD是菱形,∴AB∥CD,AB=CD=AD,OA=OC,OB=OD,∵CD=DE,∴AB=DE.又∵AB∥DE,∴四邊形ABDE是平行四邊形,∴BG=EG,AB=DE,AG=DG,又∵OD=OB,∴OG是△BDA是中位線,∴OG=AB,故①正確;∵∠BAD=60°,AB=AD,∴△BAD是等邊三角形,∴BD=AB,∴是菱形,故②正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;故③正確;故選:D.【考點(diǎn)】本題考查了菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形中位線定理、相似三角形的判定與性質(zhì)等知識.判斷①的關(guān)鍵是三角形中位線定理的運(yùn)用,②的關(guān)鍵是利用等邊三角形證明BD=AB;③的關(guān)鍵是通過相似得出面積之間的關(guān)系.二、多選題1、ABD【解析】【分析】先根據(jù)同角的余角相等得出∠G=∠EFH,再根據(jù)三角函數(shù)的定義求解即可.【詳解】解:∵在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以選項(xiàng)A、B、D都是正確的,故選:ABD.【考點(diǎn)】本題利用了同角的余角相等和銳角三角函數(shù)的定義解答,屬較簡單題目.2、ACD【解析】【分析】用2倍的放大鏡放大一個△ABC,得到一個與原三角形相似的三角形;根據(jù)相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方,周長比等于相似比.可知:放大后三角形的面積是原來的4倍,邊長和周長是原來的2倍,而內(nèi)角的度數(shù)不會改變.【詳解】解:A、錯誤,△ABC放大后角不變,故該選項(xiàng)符合題意;B、正確,△ABC放大后周長是原來的2倍,故該選項(xiàng)不符合題意;C、錯誤,△ABC放大后面積是相似比的平方,放大后面積是原來的4倍,故該選項(xiàng)符合題意;D、錯誤,故該選項(xiàng)符合題意.故選:ACD.【考點(diǎn)】本題考查對相似三角形性質(zhì)的理解.(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比.3、BCD【解析】【分析】根據(jù)坡度的定義解答即可.【詳解】交于點(diǎn),交于點(diǎn),,,,,,∴BCD正確.故選:BCD.【考點(diǎn)】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,熟記坡度的定義是解題的關(guān)鍵.4、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計(jì)算出結(jié)果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點(diǎn)】本題考查相似三角形得的性質(zhì)與應(yīng)用,能夠熟練掌握相似三角形的性質(zhì)是解決本題的關(guān)鍵.5、BCD【解析】【分析】在Rt△ABC中,∠C=90°,sinA=變形可判斷A,在Rt△ABC中,∠C=90°,由cosA=和tanA=,可得可判斷B、D,在Rt△ABC中,∠C=90°,由tanA=,可得,由勾股定理c=,可判斷C.【詳解】解:在Rt△ABC中,∠C=90°,∵sinA=,∴c=,故選項(xiàng)A正確;在Rt△ABC中,∠C=90°,∵cosA=∴∵tanA=∴∴故選項(xiàng)B不正確;在Rt△ABC中,∠C=90°,∵tanA=∴∴c=故選項(xiàng)C不正確在Rt△ABC中,∠C=90°,∵tanA=∴∵cosA=∴∴故選項(xiàng)D不正確;不能選擇的關(guān)系式是BCD.故選擇BCD.【考點(diǎn)】本題主要考查解三角形,勾股定理,解題的關(guān)鍵是熟練運(yùn)用三角函數(shù)的定義求解.6、BD【解析】【分析】設(shè)函數(shù)解析式為,將點(diǎn)(4,9)代入判斷A錯誤;將R=9Ω代入判斷B正確;由解析式判斷C錯誤;由函數(shù)性質(zhì)判斷D正確.【詳解】解:設(shè)函數(shù)解析式為,將點(diǎn)(4,9)代入,得,∴函數(shù)解析式為,故A錯誤;當(dāng)R=9Ω時,I=4A,故B正確;蓄電池的電壓是36V,故C錯誤;∵39>0,∴I隨R的增大而減小,∴當(dāng)I≤10A時,R≥3.6Ω,故D正確;故選:BD.【考點(diǎn)】此題考查了求反比例函數(shù)解析式,反比例函數(shù)的增減性,已知自變量求函數(shù)值的大小,正確掌握反比例函數(shù)的綜合知識是解題的關(guān)鍵.7、BCD【解析】【分析】作出圖形,然后根據(jù)三角函數(shù)的定義對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:如圖,A、a=b?tanA,故選項(xiàng)A錯誤,不符合題意;B、a=c?cosB正確,故關(guān)系式一定成立;C、c=正確,故關(guān)系式一定成立;D、a=b?tanA正確,故關(guān)系式一定成立;故選BCD.【考點(diǎn)】本題考查銳角三角函數(shù)的定義及運(yùn)用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.三、填空題1、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點(diǎn)】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.2、【解析】【分析】根據(jù)題意和題目中的數(shù)據(jù),可以計(jì)算出AC和BC的長,然后即可得到AB的長,從而可以解答本題.【詳解】解:∵PC⊥AC,在點(diǎn)A處測得點(diǎn)P在北偏東60°方向上,∴∠PCA=90°,∠PAC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在點(diǎn)B處測得點(diǎn)P在北偏東30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴千米,∴(千米),故答案為:.【考點(diǎn)】本題考查解直角三角形的應(yīng)用-方向角問題,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.3、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點(diǎn)】本題考查了圓周角定理及垂徑定理等相關(guān)知識點(diǎn),本題的關(guān)鍵是求出∠COB=60°.4、或【解析】【分析】(1)分別在、、中應(yīng)用含角的直角三角形的性質(zhì)以及勾股定理求得,,再根據(jù)垂直平分線的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的判定求得,最后利用線段的和差即可求得答案;根據(jù)垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)、分線段成比例定理可證得,然后根據(jù)平行線的性質(zhì)、相似三角形的判定和性質(zhì)列出方程,解方程即可求得,最后利用線段的和差即可求得答案.【詳解】解:①當(dāng)時,如圖1:∵在中,,,∴∴∵,∴∵∴∴在中,設(shè),則∵∴∴∴,∵垂直平分線段∴∵∴是等邊三角形∴∴∴;②當(dāng)時,連接、交于點(diǎn),過點(diǎn)作于,如圖2:設(shè),則,∵垂直平分線段,點(diǎn)是的中點(diǎn)∴∵∴∵∵∴垂直平分線段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴綜上所述,滿足條件的的值為6或.故答案是:6或【考點(diǎn)】本題考查了垂直平分線的性質(zhì)和判定、含角的直角三角形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、平行線的判定和性質(zhì)、相似三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)等,滲透了邏輯推理的核心素養(yǎng)以及分類討論的數(shù)學(xué)思想.5、【解析】【分析】由拋物線的圖像與軸有交點(diǎn)可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點(diǎn)∴令,有,即該方程有實(shí)數(shù)根∴∴.故答案是:【考點(diǎn)】本題考查了二次函數(shù)與軸的交點(diǎn)情況與一元二次方程分的情況的關(guān)系、解一元一次不等式,能由已知條件列出關(guān)于的不等式是解題的關(guān)鍵.6、或.【解析】【分析】由可變形為,即比較拋物線與直線之間關(guān)系,而直線PQ:與直線AB:關(guān)于與y軸對稱,由此可知拋物線與直線交于,兩點(diǎn),再觀察兩函數(shù)圖象的上下位置關(guān)系,即可得出結(jié)論.【詳解】解:∵拋物線與直線交于,兩點(diǎn),∴,,∴拋物線與直線交于,兩點(diǎn),觀察函數(shù)圖象可知:當(dāng)或時,直線在拋物線的下方,∴不等式的解集為或.故答案為或.【考點(diǎn)】本題考查了二次函數(shù)與不等式,根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集是解題的關(guān)鍵.7、(1,0)【解析】【分析】根據(jù)表中數(shù)據(jù)得到點(diǎn)(-2,-3)和(0,-3)對稱點(diǎn),從而得到拋物線的對稱軸為直線x=-1,再利用表中數(shù)據(jù)得到拋物線與x軸的一個交點(diǎn)坐標(biāo)為(-3,0),然后根據(jù)拋物線的對稱性就看得到拋物線與x軸的一個交點(diǎn)坐標(biāo).【詳解】∵x=-2,y=-3;x=0時,y=-3,∴拋物線的對稱軸為直線x=-1,∵拋物線與x軸的一個交點(diǎn)坐標(biāo)為(-3,0),∴拋物線與x軸的一個交點(diǎn)坐標(biāo)為(1,0).故答案為(1,0).【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化解關(guān)于x的一元二次方程即可求得交點(diǎn)橫坐標(biāo).也考查了二次函數(shù)的性質(zhì).四、解答題1、(1);(2)①連接交拋物線對稱軸于點(diǎn),則點(diǎn)即為所求,點(diǎn)的坐標(biāo)為;②存在;點(diǎn)的坐標(biāo)為或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可寫出拋物線的交點(diǎn)式.(2)①因?yàn)殛P(guān)于對稱軸對稱,所以,由兩點(diǎn)之間線段最短,知連接交拋物線對稱軸于點(diǎn),則點(diǎn)即為所求,先用待定系數(shù)法求出解析式,將對稱軸代入得到點(diǎn)坐標(biāo).②設(shè)點(diǎn),根據(jù)拋物線的解析式、直線的解析式,寫出Q、M的坐標(biāo),分當(dāng)在上方、下方兩種情況,列關(guān)于m的方程,解出并取大于-2的解,即可寫出的坐標(biāo).【詳解】(1)∵,,結(jié)合圖象,得A(-2,0),C(3,0),∴拋物線可表示為:,∴拋物線的表達(dá)式為;(2)①∵關(guān)于對稱軸對稱,∴,∴連接交拋物線對稱軸于點(diǎn),則點(diǎn)即為所求.將點(diǎn),的坐標(biāo)代入一次函數(shù)表達(dá)式,得直線的函數(shù)表達(dá)式為.拋物線的對稱軸為直線,當(dāng)時,,故點(diǎn)的坐標(biāo)為;②存在;設(shè)點(diǎn),則,.當(dāng)在上方時,,,,解得(舍)或;當(dāng)在下方時,,,,解得(舍)或,綜上所述,的值為或5,點(diǎn)的坐標(biāo)為或.【考點(diǎn)】本題考查了二次函數(shù)與一次函數(shù)綜合問題,熟練掌握待定系數(shù)法求解析式、最短路徑問題是解題的基礎(chǔ),動點(diǎn)問題中分類討論與數(shù)形結(jié)合轉(zhuǎn)化為方程問題是解題的關(guān)鍵.2、【解析】【分析】首先代入特殊角的三角函數(shù)值,再進(jìn)行二次根式的運(yùn)算即可求得.【詳解】解:.【考點(diǎn)】本題考查了含特殊角的三角形函數(shù)值的混合運(yùn)算,熟練掌握特殊角的三角形函數(shù)值及二次根式的運(yùn)算是解決本題的關(guān)鍵.3、(1)甲種商品每箱盈利15元,則乙種商品每箱盈利10元;(2)當(dāng)降價5元時,該商場利潤最大,最大利潤是2000元.【解析】【分析】(1)設(shè)甲種商品每箱盈利x元,則乙種商品每箱盈利(x-5)元,根據(jù)題意列出方程,解方程即可得出結(jié)論;(2)設(shè)甲種商品降價a元,則每天可多賣出20a箱,利潤為w元,根據(jù)題意列出函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的最值.【詳解】解:(1)設(shè)甲種商品每箱盈利x元,則乙種商品每箱盈利(x-5)元,根據(jù)題意得:,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),經(jīng)檢驗(yàn),x=15是原分式方程的解,符合實(shí)際,∴x-5=15-5=10(元),答:甲種商品每箱盈利15元,則乙種商品每箱盈利10元;(2)設(shè)甲種商品降價a元,則每天可多賣出20a箱,利潤為w元,由題意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,∵a=-20,當(dāng)a=5時,函數(shù)有最大值,最大值是2000元,答:當(dāng)降價5元時,該商場利潤最大,最大利潤是2000元.【考點(diǎn)】本題考查了分式方程及二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意,找出等量關(guān)系,準(zhǔn)確列出分式方程及函數(shù)關(guān)系式.4、(1);(2);(3)面積最大為,點(diǎn)坐標(biāo)為;(4)存在點(diǎn),使以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,,點(diǎn)坐標(biāo)為,,.【解析】【分析】(1)將點(diǎn),代入即可求解;(2)BC與對稱軸的交點(diǎn)即為符合條件的點(diǎn),據(jù)此可解;(3)過點(diǎn)作軸于點(diǎn),交直線與點(diǎn),當(dāng)EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)值能力測試題及答案
- 旅行用品測試題及答案
- 家電公司資產(chǎn)盤點(diǎn)管理辦法
- java基本類型面試題及答案
- 情感詩篇細(xì)膩探幽-1
- 自然研學(xué):觀察力提升策略
- 招商投資面試題及答案
- tcl華星光電技術(shù)研發(fā)面試題及答案
- 后勤培訓(xùn)考試題及答案
- 幼兒園教師個人考核總結(jié)
- 面肌痙攣手術(shù)護(hù)理要點(diǎn)
- 情緒識別與營銷-洞察及研究
- (2025)初級保育員理論知識考試試題及參考答案
- 2025年環(huán)保產(chǎn)業(yè)政策環(huán)境分析環(huán)保論證可行性研究報(bào)告
- 室上性心動過速急救護(hù)理
- 2025年度城市綜合體物業(yè)管理保安員服務(wù)勞動合同范本
- 2025年物業(yè)管理考試題庫與參考答案
- 2025-2026學(xué)年高中英語初高銜接+時態(tài)和語態(tài)
- DB37-T4894-2025植物耐鹽性田間鑒定設(shè)施建設(shè)技術(shù)規(guī)程
- 2025年幼兒教育專業(yè)職業(yè)綜合素質(zhì)測評考試試題及答案
- 智算中心新建項(xiàng)目風(fēng)險(xiǎn)管理方案
評論
0/150
提交評論