




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省集安市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,2、如圖,長(zhǎng)方形紙片ABCD中,AB=3cm,AD=9cm,將此長(zhǎng)方形紙片折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)H的位置,折痕為EF,則△ABE的面積為(
)A.6cm2 B.8cm2 C.10cm2 D.12cm23、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn),沿過點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F,已知EF=,則BC的長(zhǎng)是()A. B.3 C.3 D.34、如圖,由6個(gè)相同小正方形組成的網(wǎng)格中,A,B,C均在格點(diǎn)上,則∠ABC的度數(shù)為(
)A.45° B.50° C.55° D.60°5、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點(diǎn),則MC2-MB2等于(
)A.29 B.32 C.36 D.456、已知直角三角形紙片的兩條直角邊長(zhǎng)分別為m和n(m<n),過銳角頂點(diǎn)把該紙片剪成兩個(gè)三角形,若這兩個(gè)三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=07、如圖,在中,,,,為邊上一動(dòng)點(diǎn),于,于,為中點(diǎn),則的最小值為(
).A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、云頂滑雪公園是北京2022年冬奧會(huì)7個(gè)雪上競(jìng)賽場(chǎng)館中唯一利用現(xiàn)有雪場(chǎng)改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場(chǎng)U型池的實(shí)景圖和示意圖,該場(chǎng)地可以看作是從一個(gè)長(zhǎng)方體中挖去了半個(gè)圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點(diǎn)E在上,.一名滑雪愛好者從點(diǎn)A滑到點(diǎn)E,他滑行的最短路線長(zhǎng)為_________m.2、我國古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問:葭長(zhǎng)幾何?(1丈=10尺).意思是:有一個(gè)長(zhǎng)方體池子,底面是邊長(zhǎng)為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒有折斷),剛好貼在池邊上,問:蘆葦長(zhǎng)多少尺?答:蘆葦長(zhǎng)____________尺.3、如圖,在中,,,,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則DF的長(zhǎng)為_________.4、圖,在菱形ABCD中,,是銳角,于點(diǎn)E,M是AB的中點(diǎn),連接MD,若,則的值為______.5、公元三世紀(jì),我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”,它由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.6、如圖,在一次綜合實(shí)踐活動(dòng)中,小明將一張邊長(zhǎng)為10cm的正方形紙片ABCD,沿著BC邊上一點(diǎn)E與點(diǎn)A的連線折疊,點(diǎn)B'是點(diǎn)B的對(duì)應(yīng)點(diǎn),延長(zhǎng)EB'交DC于點(diǎn)G,B'G=cm,則△ECG的面積為_____cm2.7、如圖,點(diǎn)在正方形的邊上,若,,那么正方形的面積為_.8、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,點(diǎn)是正方形內(nèi)一點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,若,求的度數(shù).2、如圖,在四邊形中,,,于,(1)求證:;(2)若,,求四邊形的面積.3、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長(zhǎng)度)?4、數(shù)學(xué)中,常對(duì)同一個(gè)量(圖形的面積、點(diǎn)的個(gè)數(shù)等)用兩種不同的方法計(jì)算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學(xué)思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖2的方式拼成一個(gè)正方形.①用“算兩次”的方法計(jì)算圖2中陰影部分的面積:第一次列式為,第二次列式為,因?yàn)閮纱嗡兴闶奖硎镜氖峭粋€(gè)圖形的面積,所以可以得出等式;②在①中,如果,,請(qǐng)直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個(gè)邊長(zhǎng)分別為,,的直角三角形和一個(gè)兩條直角邊都是的直角三角形拼成一個(gè)梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.5、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.6、我國古代的數(shù)學(xué)名著《九章算術(shù)》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風(fēng)將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠(yuǎn).問:折處離地還有多高的竹子?(1丈=10尺)7、已如:如圖,四邊形中,,求四邊形的面積.-參考答案-一、單選題1、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時(shí)還需驗(yàn)證兩小邊的平方和是否等于最長(zhǎng)邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項(xiàng)符合題意;B、42+52≠62,不是勾股數(shù),故此選項(xiàng)不合題意;C、22+32≠42,不是勾股數(shù),故此選項(xiàng)不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項(xiàng)不合題意;故選:A.【考點(diǎn)】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).2、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長(zhǎng)方形折疊,使點(diǎn)與點(diǎn)重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點(diǎn)】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.3、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對(duì)稱軸,對(duì)稱點(diǎn)的連線被對(duì)稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長(zhǎng)可求,再利用勾股定理即可求出BC的長(zhǎng).【詳解】解:AB=AC,,故選B.【考點(diǎn)】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,求出∠AFB=90°是解題的關(guān)鍵.4、A【解析】【分析】連接AC,利用勾股定理分別求出AB、AC、BC,根據(jù)勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根據(jù)三角形內(nèi)角和定理得到答案.【詳解】連接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故選A.【考點(diǎn)】本題考查了等腰三角形,勾股定理的逆定理,解決問題的關(guān)鍵是作輔助線構(gòu)建三角形,熟練掌握等腰三角形的定義和性質(zhì),熟練運(yùn)用勾股定理的逆定理判斷直角三角形.5、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點(diǎn)】本題考查了勾股定理的知識(shí),題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運(yùn)用勾股定理求出MC2和MB2是本題的難點(diǎn),重點(diǎn)還是在于勾股定理的熟練掌握.6、C【解析】【分析】如圖,根據(jù)等腰三角形的性質(zhì)和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.7、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時(shí),AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點(diǎn)就是M點(diǎn).∵當(dāng)AP的值最小時(shí),AM的值就最小,∴當(dāng)AP⊥BC時(shí),AP的值最小,即AM的值最小.∵AP?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點(diǎn)】本題考查了矩形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,三角形的面積公式的運(yùn)用,垂線段最短的性質(zhì)的運(yùn)用,解題的關(guān)鍵是求出AP的最小值.二、填空題1、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長(zhǎng).在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長(zhǎng).【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長(zhǎng).在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點(diǎn)】本題考查了平面展開﹣?zhàn)疃搪窂絾栴},解決本題的關(guān)鍵是掌握?qǐng)A柱的側(cè)面展開圖是矩形,利用勾股定理求最短距離.2、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點(diǎn)】此題考查了勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.3、【解析】【分析】根據(jù)折疊的性質(zhì)可得,,從而得出相應(yīng)角相等,再根據(jù)角之間的關(guān)系得出,從而得出為等腰直角三角形,再根據(jù)勾股定理求出的長(zhǎng)度,利用三角形的面積公式求出的長(zhǎng)度,再求出、的長(zhǎng)度,最后求出的長(zhǎng)度.【詳解】解:∵邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處,∴,∴,,,∵邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)處,∴,∴,∵,∴,∴為等腰直角三角形,∴,∵,,,∴,∵,∴,∴,∴.故答案為:.【考點(diǎn)】本題主要考查了圖形的翻折變化,勾股定理的運(yùn)用,等腰直角三角形的判定,根據(jù)折疊的性質(zhì)求得相應(yīng)的角是解答本題的關(guān)鍵.4、【解析】【分析】延長(zhǎng)DM交CB的延長(zhǎng)線于點(diǎn)首先證明,設(shè),利用勾股定理構(gòu)建方程求出x即可解決問題.【詳解】延長(zhǎng)DM交CB的延長(zhǎng)線于點(diǎn)H,四邊形ABCD是菱形,,,,,,≌,,,,設(shè),,,,,,或舍棄,,故答案為.【考點(diǎn)】本題考查了菱形的性質(zhì)、勾股定理、線段的垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),正確添加輔助線,構(gòu)造全等三角形解決問題是解決本題的關(guān)鍵.5、169.【解析】【分析】由題意知小正方形的邊長(zhǎng)為7.設(shè)直角三角形中較小邊長(zhǎng)為a,較長(zhǎng)的邊為b,運(yùn)用正切函數(shù)定義求解.【詳解】解:由題意知,小正方形的邊長(zhǎng)為7,設(shè)直角三角形中較小邊長(zhǎng)為a,較長(zhǎng)的邊為b,則tanθ=短邊:長(zhǎng)邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點(diǎn)】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關(guān)鍵.6、【解析】【分析】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,結(jié)合全等的知識(shí)找出題中的線段之間的關(guān)系是本題的解題關(guān)鍵.7、.【解析】【分析】根據(jù)勾股定理求出BC,根據(jù)正方形的面積公式計(jì)算即可.【詳解】解:由勾股定理得,,正方形的面積,故答案為.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.8、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長(zhǎng)為尺,根據(jù)題意可列方程為:.故答案為:.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.三、解答題1、【解析】【分析】連接EE`,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BE'=2,AE=CE'=1,∠EBE`=90°,則可判斷△BEE`為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得EE`=BE=2,∠BE`E=45°,在△CEE'中,由于CE`+EE'=CE,根據(jù)勾股定理的逆定理得到△CEE`為直角三角形,即∠EE`C=90°,然后利用∠BE'C=∠BE'E+∠CE'E求解【詳解】連接EE`,如圖,∵△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBE`∴BE=BE'=2,AE=CE'=1,∠EBE'=90°∴△BEE'為等腰直角三角形∴EE'=BE=2,∠BE'E=45°在△CEE`中,CE=3,CE'=1,EE'=2,∵1+(2)=3∴CE+EE'=CE∴△CEE'為直角三角形∴∠EE'C=90°∴∠BE'C=∠BE'E+∠CE'E=135°【考點(diǎn)】此題考查了等腰直角三角形,勾股定理的逆定理,正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),利用勾股定理證明三角形是直角三角形是解題關(guān)鍵2、(1)詳見解析;(2)S四邊形ABCD=56【解析】【分析】(1)由等角的余角相等可得∠DAC=∠ABE,再根據(jù)題意可得Rt△BAE≌Rt△ADC,即可證;(2)根據(jù)勾股定理算出AC,由全等可得BE=AC,再算出△ACD的面積和△ABC的面積相加即可.【詳解】解:(1)∵BE⊥AC,∴∠ABE+∠BAE=90°,∵BAD=90°,∴∠BAE+∠DAC=90°,∴∠DAC=∠ABE,又∵AB=AD,∠BEA=∠ACD,∴Rt△BAE≌Rt△ADC(AAS),∴BE=AC.(2)∵AB=AD=10,CD=6,∠ACD=90°,∴,∵Rt△BAE≌Rt△ADC,∴BE=AC=8,∴.【考點(diǎn)】本題考查三角形全等的判定和性質(zhì),三角形面積,關(guān)鍵在于牢記基礎(chǔ)知識(shí)并靈活使用.3、這棵樹在離地面6米處被折斷【解析】【分析】設(shè),利用勾股定理列方程求解即可.【詳解】解:設(shè),∵在中,,∴,∴.答:這棵樹在離地面6米處被折斷【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解答本題的關(guān)鍵.直角三角形兩條直角邊的平方和等于斜邊的平方.當(dāng)題目中出現(xiàn)直角三角形,且該直角三角形的一邊為待求量時(shí),常使用勾股定理進(jìn)行求解.有時(shí)也可以利用勾股定理列方程求解.4、(1)①,,;或,,;②9;(2)【解析】【分析】(1)①第一次求解陰影部分的邊長(zhǎng),再計(jì)算面積,第二次利用大的正方形的面積減去四個(gè)長(zhǎng)方形的面積,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 時(shí)間管理課件觀后感
- 八年級(jí)家長(zhǎng)會(huì)學(xué)生發(fā)言稿
- 語言康復(fù)家長(zhǎng)課件
- 中班畫媽媽課件
- 2025版?zhèn)€人工業(yè)廠房買賣合同樣本
- 2025版科技企業(yè)債券發(fā)行與風(fēng)險(xiǎn)控制合同
- 二零二五年度離婚冷靜期法律援助與離婚程序全程服務(wù)協(xié)議
- 2025版架子工工程安全責(zé)任保險(xiǎn)合同樣本
- 2025承包合同下載:城市軌道交通建設(shè)項(xiàng)目合作協(xié)議
- 二零二五年度企業(yè)年會(huì)場(chǎng)地及服務(wù)合同范本
- 建筑工程施工安全監(jiān)督審查手續(xù)
- 小兒蕁麻疹的護(hù)理查房
- 生產(chǎn)經(jīng)營單位主要負(fù)責(zé)人和安全管理人員安全培訓(xùn)教材
- 空雨傘管理法
- 甲狀腺圍手術(shù)期病人的護(hù)理
- 水電站班組長(zhǎng)管理培訓(xùn)
- 汽車4S店二手車收購流程
- 中國、世界矢量地圖素材(詳細(xì)到省市、能編輯)
- 西安交通大學(xué)《臨床流行病學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 醫(yī)療器械銷售代表崗位招聘面試題及回答建議(某大型集團(tuán)公司)2024年
- 《垃圾分類》課件完整版
評(píng)論
0/150
提交評(píng)論