




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省臨夏市中考數(shù)學(xué)真題分類(平行線的證明)匯編綜合練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,有以下四個(gè)條件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的條件的個(gè)數(shù)有(
)A.1 B.2 C.3 D.42、如圖,在△ABC中,∠A=30°,∠B=50°,將點(diǎn)A與點(diǎn)B分別沿MN和EF折疊,使點(diǎn)A、B與點(diǎn)C重合,則∠NCF的度數(shù)為(
).A.22° B.21° C.20° D.19°3、將一副三角板()按如圖所示方式擺放,使得,則等于()A. B. C. D.4、如圖,∠B=∠C,則∠ADC與∠AEB的大小關(guān)系是(
)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關(guān)系不確定5、如圖所示,過(guò)點(diǎn)P畫直線a的平行線b的作法的依據(jù)是()A.兩直線平行,同位角相等 B.同位角相等,兩直線平行C.兩直線平行,內(nèi)錯(cuò)角相等 D.內(nèi)錯(cuò)角相等,兩直線平行6、如圖:∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,則下列說(shuō)法正確的有幾個(gè)(
)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;
(4)AE⊥DE.(5)DE=AEA.2個(gè) B.3個(gè) C.4個(gè) D.57、如圖,∠ABD、∠ACD的角平分線交于點(diǎn)P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(
)A.15° B.20° C.25° D.30°8、中,它的三條角平分線的交點(diǎn)為O,若∠B=80°,則∠AOC的度數(shù)為()A.100° B.130° C.110° D.150°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、說(shuō)明命題“若x>-4,則x2>16”是假命題的一個(gè)反例可以是_______.2、如圖所示,請(qǐng)你填寫一個(gè)適當(dāng)?shù)臈l件:_____,使AD∥BC.3、如圖a是長(zhǎng)方形紙帶,∠DEF=16°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數(shù)是__.4、如圖,已知l1∥l2,直線l分別與l1,l2相交于點(diǎn)C,D,把一塊含30°角的三角尺按如圖位置擺放,若∠1=130°,則∠2=___.5、如圖,在中,,,,則x=______.6、把“對(duì)頂角相等”改寫成“如果…那么…”的形式____________________________________________.7、如圖,將長(zhǎng)方形紙片分別沿,折疊,點(diǎn),恰好重合于點(diǎn),,則__________.三、解答題(7小題,每小題10分,共計(jì)70分)1、完成下列推理過(guò)程:已知:如圖,∠1+∠2=180°,∠3=∠B求證:∠EDG+∠DGC=180°證明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()2、如圖,ABCD,,,試說(shuō)明:BCDE.請(qǐng)補(bǔ)充說(shuō)明過(guò)程,并在括號(hào)內(nèi)填上相應(yīng)的理由.解:∵ABCD(已知),,又(已知),,,,BCDE.3、已知:如圖1,,BD平分,,過(guò)點(diǎn)A作直線,延長(zhǎng)CD交MN于點(diǎn)E(1)當(dāng)時(shí),的度數(shù)為_(kāi)_____.(2)如圖2,當(dāng)時(shí),求的度數(shù);(3)設(shè),用含x的代數(shù)式表示的度數(shù).4、如圖,,.(1)試說(shuō)明;(2)若,且,求的度數(shù).5、(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請(qǐng)你求出∠EAD與∠B、∠C之間的數(shù)列關(guān)系?并說(shuō)明理由.6、點(diǎn)E在射線DA上,點(diǎn)F、G為射線BC.上兩個(gè)動(dòng)點(diǎn),滿足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如圖,當(dāng)點(diǎn)G在F右側(cè)時(shí),求證:;(2)如圖,當(dāng)點(diǎn)G在BF左側(cè)時(shí),求證:;(3)如圖,在(2)的條件下,P為BD延長(zhǎng)線上一點(diǎn),DM平分∠BDG,交BC于點(diǎn)M,DN平分∠PDM,交EF于點(diǎn)N,連接NG,若DG⊥NG,,求∠B的度數(shù).7、如圖,已知AB∥CD,AD和BC交于點(diǎn)O,E為OC上一點(diǎn),F(xiàn)為CD上一點(diǎn),且∠CEF+∠BOD=180°.說(shuō)明∠EFC=∠A的理由.-參考答案-一、單選題1、C【解析】【分析】根據(jù)平行線的判定定理求解,即可求得答案.【詳解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的條件是①③④.故選:C.【考點(diǎn)】本題考查平行線的判定定理:1.同旁內(nèi)角互補(bǔ),兩直線平行;2.同位角相等,兩直線平行;3.內(nèi)錯(cuò)角相等,兩直線平行.2、C【解析】【分析】根據(jù)三角形的內(nèi)角和定理可得∠ACB=100°,再由折疊的性質(zhì)可得∠ACN=∠A=30°,∠FCE=∠B=50°,即可求解.【詳解】解:∵∠A=30°,∠B=50°,∴∠ACB=100°,∵將點(diǎn)A與點(diǎn)B分別沿MN和EF折疊,使點(diǎn)A、B與點(diǎn)C重合,∴∠ACN=∠A=30°,∠FCE=∠B=50°,∴∠NCF=20°,故選:C.【考點(diǎn)】本題主要考查了圖形的折疊的性質(zhì)、三角形內(nèi)角和定理、熟練掌握?qǐng)D形的折疊的性質(zhì)、三角形內(nèi)角和定理是解題的關(guān)鍵.3、A【解析】【分析】根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)進(jìn)行計(jì)算,即可得到答案.【詳解】解:,.,.故選.【考點(diǎn)】本題考查平行線的性質(zhì)和三角形外角的性質(zhì),解題的關(guān)鍵是掌握平行線的性質(zhì)和三角形外角的性質(zhì).4、C【解析】【分析】首先在△ADC中有內(nèi)角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內(nèi)角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點(diǎn)】本題主要考查三角形內(nèi)角和定理的應(yīng)用,利用了三角形內(nèi)角和為180度,此題難度不大.5、D【解析】【詳解】解:如圖所示,根據(jù)圖中直線a、b被c所截形成的內(nèi)錯(cuò)角相等,可得依據(jù)為內(nèi)錯(cuò)角相等,兩直線平行.故選D.6、B【解析】【分析】過(guò)點(diǎn)E作EF⊥AD垂足為點(diǎn)F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過(guò)點(diǎn)E作EF⊥AD,垂足為點(diǎn)F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點(diǎn),∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結(jié)論(1)正確,則AD=AF+DF=AB+CD,故結(jié)論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結(jié)論(4)正確.∵AB≠CD,AE≠DE,(5)錯(cuò)誤,∴△EBA≌△DCE不可能成立,故結(jié)論(2)錯(cuò)誤.綜上所知正確的結(jié)論有3個(gè).故答案為:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、平行線的判定等內(nèi)容,作出輔助線是解題的關(guān)鍵.7、B【解析】【分析】利用三角形外角的性質(zhì),得到∠ACD與∠ABD的關(guān)系,然后用角平分線的性質(zhì)得到角相等的關(guān)系,代入計(jì)算即可得到答案.【詳解】解:延長(zhǎng)DC,與AB交于點(diǎn)E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點(diǎn)】本題綜合考查角平分線的性質(zhì)、三角形外角的性質(zhì)、三角形內(nèi)角和等知識(shí)點(diǎn).解題的關(guān)鍵是熟練的運(yùn)用所學(xué)性質(zhì)去求解.8、B【解析】【分析】先根據(jù)角平分線的定義可得,,再根據(jù)三角形的內(nèi)角和定理可得,然后根據(jù)三角形的內(nèi)角和定理可得,由此即可得出答案.【詳解】如圖,∵AO,CO分別是,的角平分線∴,∴又∵∴∴故選:B.【考點(diǎn)】本題考查了角平分線的定義、三角形的內(nèi)角和定理等知識(shí)點(diǎn),掌握三角形的內(nèi)角和定理是解題關(guān)鍵.二、填空題1、x=-3,答案不唯一【解析】【分析】當(dāng)x=-3時(shí),滿足x>-4,但不能得到x2>16,于是x=-3可作為說(shuō)明命題“x>-4,則x2>16”是假命題的一個(gè)反例.【詳解】說(shuō)明命題“x>-4,則x2>16”是假命題的一個(gè)反例可以是x=-3.故答案為-3.【考點(diǎn)】本題考查了命題與定理:判斷一件事情的語(yǔ)句,叫做命題.許多命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng),一個(gè)命題可以寫成“如果…那么…”形式.有些命題的正確性是用推理證實(shí)的,這樣的真命題叫做定理.任何一個(gè)命題非真即假.要說(shuō)明一個(gè)命題的正確性,一般需要推理、論證,而判斷一個(gè)命題是假命題,只需舉出一個(gè)反例即可.2、∠FAD=∠FBC(答案不唯一)【解析】【詳解】根據(jù)同位角相等,兩直線平行,可填∠FAD=∠FBC;根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可填∠ADB=∠DBC;根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行,可填∠DAB+∠ABC=180°.故答案為:∠FAD=∠FBC;或∠ADB=∠DBC;或∠DAB+∠ABC=180°.3、132°##132度【解析】【分析】先由矩形的性質(zhì)得出∠BFE=∠DEF=16°,再根據(jù)折疊的性質(zhì)得出∠CFG=180°﹣2∠BFE,由∠CFE=∠CFG﹣∠EFG即可得出答案.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=16°,∴∠CFE=∠CFG﹣∠EFG=180°﹣2∠BFE﹣∠EFG=180°﹣3×16°=132°,故答案為:132°.【考點(diǎn)】本題考查了翻折變換的性質(zhì)、矩形的性質(zhì)、平行線的性質(zhì);熟練掌握翻折變換和矩形的性質(zhì),弄清各個(gè)角之間的關(guān)系是解決問(wèn)題的關(guān)鍵.4、20°【解析】【分析】先根據(jù)平行線的性質(zhì),得到∠BDC=50°,再根據(jù)∠ADB=30°,即可得出∠2=20°.【詳解】解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案為:20°.【考點(diǎn)】本題主要考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.5、130【解析】【分析】由可得,再由,即可求解;【詳解】解:∵,,∴∵,∴,∴∴故答案為:130.【考點(diǎn)】本題主要考查三角形的內(nèi)角和定理,掌握三角形的內(nèi)角和定理并靈活應(yīng)用是解本題的關(guān)鍵.6、如果兩個(gè)角是對(duì)頂角,那么它們相等【解析】【分析】先找到命題的題設(shè)和結(jié)論,再寫成“如果…那么…”的形式.【詳解】解:∵原命題的條件是:“兩個(gè)角是對(duì)頂角”,結(jié)論是:“它們相等”,∴命題“對(duì)頂角相等”寫成“如果…那么…”的形式為:“如果兩個(gè)角是對(duì)頂角,那么它們相等”.故答案為:如果兩個(gè)角是對(duì)頂角,那么它們相等.【考點(diǎn)】本題考查了命題的條件和結(jié)論的敘述,注意確定一個(gè)命題的條件與結(jié)論的方法是首先把這個(gè)命題寫成:“如果…,那么…”的形式.7、##54度【解析】【分析】根據(jù)翻折可得∠MAB=∠BAP,∠NAC=∠PAC,得∠MAB+∠NAC=90°,再由,即可解決問(wèn)題.【詳解】解:根據(jù)翻折可知:∠MAB=∠BAP,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC180°=90°,∴∠MAB+∠NAC=90°,∵∠NAC=∠MAB,∴∠NAC+∠NAC=90°,∴∠NAC=54°.故答案為:54°.【考點(diǎn)】本題主要考查翻折變換,熟練掌握和應(yīng)用翻折的性質(zhì)是解題的關(guān)鍵.三、解答題1、鄰補(bǔ)角定義;∠DFE,同角的補(bǔ)角相等;內(nèi)錯(cuò)角相等,兩直線平行;∠ADE,兩直線平行,內(nèi)錯(cuò)角相等;等量代換;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ)【解析】【分析】依據(jù)∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由內(nèi)錯(cuò)角相等,兩直線平行證明EF∥AB,則∠3=∠ADE,再根據(jù)∠3=∠B,由同位角相等,兩直線平行證明DE∥BC,故可根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可得出結(jié)論.【詳解】∵∠1+∠2=180°(已知)∠1+∠DFE=180°(鄰補(bǔ)角定義)∴∠2=∠DFE(同角的補(bǔ)角相等)∴EF∥AB(內(nèi)錯(cuò)角相等,兩直線平行)∴∠3=∠ADE(兩直線平行,內(nèi)錯(cuò)角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代換)∴DE∥BC(同位角相等,兩直線平行)∴∠EDG+∠DGC=180°(兩直線平行,同旁內(nèi)角互補(bǔ))【考點(diǎn)】本題考查了平行線的性質(zhì)和判定.正確識(shí)別“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是正確答題的關(guān)鍵.2、兩直線平行,內(nèi)錯(cuò)角相等;55;等量代換;已知;;同旁內(nèi)角互補(bǔ),兩直線平行【解析】【分析】由題意根據(jù)平行線的性質(zhì)與判定即可補(bǔ)充說(shuō)理過(guò)程.【詳解】解:(已知),(兩直線平行,內(nèi)錯(cuò)角相等),又(已知),(等量代換),(已知),,(同旁內(nèi)角互補(bǔ),兩直線平行).故答案為:兩直線平行,內(nèi)錯(cuò)角相等;55;等量代換;已知;;同旁內(nèi)角互補(bǔ),兩直線平行.【考點(diǎn)】本題考查平行線的判定與性質(zhì),解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).3、(1)(2)(3)【解析】【分析】(1)根據(jù)題意證明,進(jìn)而可得,根據(jù),即可求解.繼而可得,即可求得;(2)根據(jù)全等三角形的性質(zhì)可得,根據(jù)三角形內(nèi)角和定理可得,進(jìn)而根據(jù)即可求解.(3)根據(jù)(1)(2)的方法分類討論即可求解.(1)解:BD平分,,,,,,,,,,,故答案為:,(2)解:由(1)可知,,,,,,,(3)解:設(shè),,,,,當(dāng)點(diǎn)在點(diǎn)的左側(cè)時(shí),,當(dāng)點(diǎn)在點(diǎn)的右側(cè)時(shí),,.【考點(diǎn)】本題考查了全等三角形的性質(zhì)與判定,三角形的內(nèi)角和定理的應(yīng)用,掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.4、(1)見(jiàn)解析(2)35°【解析】【分析】(1)根據(jù),可得BM∥CN,從而得到∠CBM=∠BCN,再由,可得∠ABC=∠BCD,即可求證;(2)根據(jù)對(duì)頂角相等可得∠ABD=110°,再由三角形的內(nèi)角和定理可得∠BAD=35°,然后根據(jù)AB∥CD,即可求解.(1)解:∵,∴BM∥CN,∴∠CBM=∠BCN,∵,∴∠3+∠CBM=∠4+∠BCN,即∠ABC=∠BCD,∴AB∥CD;(2)解:∵∠ABD=∠EBF,,∴∠ABD=110°,∴∠BAD+∠BDA=70°,∵,∴∠BAD=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.【考點(diǎn)】本題主要考查了平行線的性質(zhì)和判定,對(duì)頂角的性質(zhì),三角形的內(nèi)角和定理,熟練掌握平行線的性質(zhì)和判定,對(duì)頂角的性質(zhì),三角形的內(nèi)角和定理是解題的關(guān)鍵.5、(1)20°;(2)∠EAD=∠C﹣∠B.理由見(jiàn)解析.【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理求出∠BAC,求出∠CAE,根據(jù)三角形內(nèi)角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可;(2)根據(jù)三角形內(nèi)角和定理求出∠BAC,求出∠CAE,根據(jù)三角形內(nèi)角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可.【詳解】(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-∠B-∠C=60°,∵AE平分∠BAC,∴∠CAE=∠BAC=30°,∵AD⊥BC,∴∠ADC=90°,∵∠C=80°,∴∠CAD=90°-∠C=10°,∴∠EAD=∠CAE-∠CAD=30°-10°=20°;(2)∵三角形的內(nèi)角和等于180°,∴∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴∠CAE=∠BAC=(180°-∠B-∠C),∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C,∴∠EAD=∠CAE-∠CAD=(180°-∠B-∠C)-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水彩老師考試題及答案
- 成人音樂(lè)測(cè)試題及答案
- 安康藥房面試題及答案
- 生豬屠宰面試題及答案
- 產(chǎn)業(yè)崗位面試題及答案
- 輕工分類考試題及答案
- 2025年桂平市教育系統(tǒng)招聘教師考試筆試試題(含答案)
- 2025年大同市消防員考試筆試試題(含答案)
- 2024年事業(yè)單位招聘考試公共基礎(chǔ)知識(shí)必考題庫(kù)及答案
- 2024年湖北直屬事業(yè)單位招聘綜合應(yīng)用能力真題及答案(B類)
- 2025年發(fā)展對(duì)象考試題庫(kù)附含答案
- 2025年新專長(zhǎng)針灸考試題及答案
- 2025年甘肅社會(huì)化工會(huì)工作者招聘考試(公共基礎(chǔ)知識(shí))模擬試題及答案
- 公司解散清算的法律意見(jiàn)書、債權(quán)處理法律意見(jiàn)書
- 《心系國(guó)防 強(qiáng)國(guó)有我》 課件-2024-2025學(xué)年高一上學(xué)期開(kāi)學(xué)第一課國(guó)防教育主題班會(huì)
- 2022年高校教師資格證(高校教師職業(yè)道德)考試題庫(kù)高分300題帶解析答案(安徽省專用)
- 口腔科超聲波潔牙知情同意書
- 公安派出所優(yōu)質(zhì)建筑外觀形象設(shè)計(jì)基礎(chǔ)規(guī)范
- C型鋼檢驗(yàn)報(bào)告
- 甲狀腺腺瘤教學(xué)查房課件
- 人民法院法庭建設(shè)項(xiàng)目可行性研究報(bào)告
評(píng)論
0/150
提交評(píng)論