




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省鐵力市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、在△ABC中,∠A,∠B,∠C的對(duì)邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果,那么△ABC是直角三角形D.如果,那么△ABC是直角三角形2、一個(gè)直角三角形的兩條直角邊邊長(zhǎng)分別為6和8,則斜邊上的高為(
)A.4.5 B.4.6 C.4.8 D.53、在中,,,,的對(duì)邊分別是a,b,c,若,,則的面積是(
)A. B. C. D.4、下列各組數(shù)據(jù)為三角形的三邊,能構(gòu)成直角三角形的是(
)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,55、在△ABC中,∠A,∠B,∠C的對(duì)邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形6、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)E處,連接DE交AB于點(diǎn)F,當(dāng)∠DEB是直角時(shí),DF的長(zhǎng)為(
).A.5 B.3 C. D.7、如圖,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,連接AE,BD交于點(diǎn)F,則BF的長(zhǎng)為(
)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、我國(guó)古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問(wèn)題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn):葭長(zhǎng)幾何?(1丈=10尺).意思是:有一個(gè)長(zhǎng)方體池子,底面是邊長(zhǎng)為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒(méi)有折斷),剛好貼在池邊上,問(wèn):蘆葦長(zhǎng)多少尺?答:蘆葦長(zhǎng)____________尺.2、如圖,在長(zhǎng)方形ABCD中,AB=8,AD=10,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B恰好落在線段DE上的點(diǎn)F處,則BE的長(zhǎng)為_(kāi)_____.3、如圖,在一次綜合實(shí)踐活動(dòng)中,小明將一張邊長(zhǎng)為的正方形紙片,沿著邊上一點(diǎn)與點(diǎn)的連線折疊,點(diǎn)是點(diǎn)的對(duì)應(yīng)點(diǎn),延長(zhǎng)交于點(diǎn),經(jīng)測(cè)量,,則的面積為_(kāi)_____.4、如圖,將一個(gè)長(zhǎng)方形紙片沿折疊,使C點(diǎn)與A點(diǎn)重合,若,則線段的長(zhǎng)是_________.5、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為_(kāi)_____.6、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.7、如圖,點(diǎn)在正方形的邊上,若,,那么正方形的面積為_(kāi).8、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點(diǎn)C到AB的距離是_______.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.2、湖的兩岸有A,B兩棵景觀樹,數(shù)學(xué)興趣小組設(shè)計(jì)實(shí)驗(yàn)測(cè)量?jī)煽镁坝^樹之間的距離,他們?cè)谂cAB垂直的BC方向上取點(diǎn)C,測(cè)得米,米.求:(1)兩棵景觀樹之間的距離;(2)點(diǎn)B到直線AC的距離.3、如圖所示的一塊地,已知,,,,,求這塊地的面積.4、我們知道,到線段兩端距離相等的點(diǎn)在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.(1)如圖1,點(diǎn)P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點(diǎn)P是△APD的準(zhǔn)外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準(zhǔn)外心P在△ABC的直角邊上,試求AP的長(zhǎng).5、(1)圖1是由有20個(gè)邊長(zhǎng)為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個(gè)大正方形(內(nèi)部的粗實(shí)線表示分割線),請(qǐng)你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請(qǐng)你利用圖2中拼成的大正方形證明勾股定理.(3)應(yīng)用:測(cè)量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測(cè)出了下列數(shù)據(jù):①測(cè)得拉繩垂到地面后,多出的長(zhǎng)度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請(qǐng)你根據(jù)所測(cè)得的數(shù)據(jù)設(shè)計(jì)可行性方案,解決這一問(wèn)題.(畫出示意圖并計(jì)算出這根旗桿的高度).6、如圖,點(diǎn)B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長(zhǎng).7、如圖,小明家在一條東西走向的公路北側(cè)米的點(diǎn)處,小紅家位于小明家北米(米)、東米(米)點(diǎn)處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點(diǎn)處建一個(gè)快遞驛站,使最小,請(qǐng)確定點(diǎn)的位置,并求的最小值.-參考答案-一、單選題1、A【解析】【分析】根據(jù)直角三角形的判定和勾股定理的逆定理解答即可.【詳解】解:A、如果
a2=b2-c2,即b2=a2+c2,那么△ABC
是直角三角形且∠B=90°,選項(xiàng)錯(cuò)誤,符合題意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;C、如果
a2:b2:c2=9:16:25,滿足a2+b2=c2,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;故選:A.【考點(diǎn)】本題考查的是直角三角形的判定和勾股定理的逆定理的應(yīng)用,如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.2、C【解析】【分析】根據(jù)勾股定理求出斜邊的長(zhǎng),再根據(jù)面積法求出斜邊的高.【詳解】解:設(shè)斜邊長(zhǎng)為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點(diǎn)】本題考查了勾股定理,利用勾股定理求直角三角形的邊長(zhǎng)和利用面積法求直角三角形的高是解決此類題的關(guān)鍵.3、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對(duì)的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點(diǎn)】本題主要考查了勾股定理,完全平方公式變形求值,解題的關(guān)鍵是將完全平方公式變形求出ab的值.4、D【解析】【分析】根據(jù)勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進(jìn)行判斷.【詳解】A、42+72≠82,故不能構(gòu)成直角三角形;B、22+22≠22,故不能構(gòu)成直角三角形;C、2+2=4,故不能構(gòu)成三角形,不能構(gòu)成直角三角形;D、52+122=132,故能構(gòu)成直角三角形,故選D.【考點(diǎn)】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.5、B【解析】【分析】根據(jù)勾股定理的逆定理、三角形內(nèi)角和定理、直角三角形定義即可.【詳解】解:A、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此選項(xiàng)正確;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此選項(xiàng)不正確;C、如果∠A:∠B:∠C=1:3:2,設(shè)∠A=x,則∠B=3x,∠C=2x,則x+3x+2x=180°,解得:x=30°,則3x=90°,∴△ABC是直角三角形,此選項(xiàng)正確;D、如果a2:b2:c2=9:16:25,則a2+b2=c2,∴△ABC是直角三角形,此選項(xiàng)正確;故選:B.【考點(diǎn)】本題考查了三角形內(nèi)角和,勾股定理的逆定理,如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.6、C【解析】【分析】如圖,由題意知,,,,可知三點(diǎn)共線,與重合,在中,由勾股定理得,求的值,設(shè),,在中,由勾股定理得,計(jì)算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點(diǎn)共線∴與重合在中,由勾股定理得設(shè),在中,由勾股定理得即解得∴的長(zhǎng)為故選C.【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理等知識(shí).解題的關(guān)鍵在于明確三點(diǎn)共線,與重合.7、B【解析】【分析】由已知證得,進(jìn)而確定三個(gè)內(nèi)角的大小,求得,進(jìn)而可得到答案.【詳解】解:∵∴∴又∵∴∴∵在等腰直角三角形中∴∴∴∵∴故選:B.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì),勾股定理;熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.二、填空題1、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點(diǎn)】此題考查了勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.2、【解析】【分析】設(shè),則,由折疊的性質(zhì)可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設(shè),則,由折疊的性質(zhì)可知,,,.在中,,.在中,,即,解得.的長(zhǎng)為.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,折疊的性質(zhì),熟練掌握勾股定理是解題的關(guān)鍵.3、##【解析】【分析】根據(jù)題意,,進(jìn)而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理,掌握勾股定理是解題的關(guān)鍵.4、【解析】【分析】根據(jù)折疊的性質(zhì)和勾股定理即可求得.【詳解】解:∵長(zhǎng)方形紙片,∴,,根據(jù)折疊的性質(zhì)可得,,,設(shè),,根據(jù)勾股定理,即,解得,故答案為:.【考點(diǎn)】本題考查折疊與勾股定理.能正確表示直角三角形的三邊是解題關(guān)鍵.5、29【解析】【分析】如圖(見(jiàn)解析),先根據(jù)正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解題關(guān)鍵.6、+24【解析】【分析】連結(jié)BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個(gè)三角形面積相加即可.【詳解】解:連結(jié)BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點(diǎn)】本題考查勾股定理以及逆定理,三角形的面積等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考常考題型.7、.【解析】【分析】根據(jù)勾股定理求出BC,根據(jù)正方形的面積公式計(jì)算即可.【詳解】解:由勾股定理得,,正方形的面積,故答案為.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.8、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長(zhǎng),再根據(jù)三角形的面積為定值即可求出則點(diǎn)C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點(diǎn)】本題考查了勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方是解題的關(guān)鍵三、解答題1、(1)A、C兩地之間的距離為14.1km;(2)C港在A港北偏東15°的方向上.【解析】【分析】(1)根據(jù)方位角的定義可得出∠ABC=90°,再根據(jù)勾股定理可求得AC的長(zhǎng)為14.1.(2)由(1)可知△ABC為等腰直角三角形,從而得出∠BAC=45°,求出∠CAM=15°,所而確定C港在A港的什么方向.【詳解】(1)由題意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==≈14.1.答:A、C兩地之間的距離為14.1km.(2)由(1)知,△ABC為等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏東15°的方向上.【考點(diǎn)】本題考查了方位角的概念及勾股定理及其逆定理,正確理解方位角是解題的關(guān)鍵.2、(1)A,B兩點(diǎn)間的距離是40米;(2)點(diǎn)B到直線AC的距離是24米.【解析】【分析】(1)根據(jù)勾股定理解答即可;(2)根據(jù)三角形面積公式解答即可.【詳解】(1)因?yàn)槭侵苯侨切?,所以由勾股定理,得.因?yàn)槊?,,所以.因?yàn)?,所以米.即A,B兩點(diǎn)間的距離是40米.(2)過(guò)點(diǎn)B作于點(diǎn)D.因?yàn)?,所以.所以(米),即點(diǎn)B到直線AC的距離是24米.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,屬于基礎(chǔ)題,關(guān)鍵是掌握勾股定理在直角三角形中的表達(dá)式.3、【解析】【分析】根據(jù)勾股定理求得的長(zhǎng),再根據(jù)勾股定理的逆定理判定為直角三角形,從而不難求得這塊地的面積.【詳解】解:連接.,,為直角三角形,,這塊地的面積.【考點(diǎn)】本題考查了學(xué)生對(duì)勾股定理及其逆定理的理解及運(yùn)用能力,解題的關(guān)鍵是掌握勾股定理的知識(shí).4、(1)見(jiàn)解析;(2)AP的長(zhǎng)為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點(diǎn)P是△APD的準(zhǔn)外心;(2)先利用勾股定理計(jì)算AC=4,再進(jìn)行討論:當(dāng)P點(diǎn)在AB上,PA=PB,當(dāng)P點(diǎn)在AC上,PA=PC,易得對(duì)應(yīng)AP的值;當(dāng)P點(diǎn)在AC上,PB=PC,設(shè)AP=t,則PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此時(shí)AP的長(zhǎng).【詳解】(1)證明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴點(diǎn)P是△APD的準(zhǔn)外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,當(dāng)P點(diǎn)在AB上,PA=PB,則APAB;當(dāng)P點(diǎn)在AC上,PA=PC,則APAC=2,當(dāng)P點(diǎn)在AC上,PB=PC,如圖2,設(shè)AP=t,則PC=PB=4﹣x,在Rt△ABP中,32+t2=(4﹣t)2,解得t,即此時(shí)AP,綜上所述,AP的長(zhǎng)為或2或.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理及新定義的運(yùn)用能力.理解題中給的定義是解題的關(guān)鍵.5、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長(zhǎng)0.5米,BC=4米,CD=0.5米,求AB的長(zhǎng);8米【解析】【分析】(1)將圖1分割成五塊:四個(gè)直角邊分別為1、2的直角三角形,一個(gè)邊長(zhǎng)為2的正方形,再在圖2中,拼成邊長(zhǎng)為的正方形即可.(2)根據(jù)20個(gè)小正方形的面積的和等于拼成的正方形的面積,根據(jù)勾股定理確定截線的長(zhǎng)度即可;(3)根據(jù)題意,畫出圖形,可將該問(wèn)題抽象為解直角三角形問(wèn)題,該直角三角形的斜邊比其中一條直角邊多1m,而另一條直角邊長(zhǎng)為5m,可以根據(jù)勾股定理求出斜邊的長(zhǎng)即可.【詳解】解:(1)如圖(2)==∴(3)如圖,在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長(zhǎng)0.5米,BC=4米,CD=0.5米,求AB的長(zhǎng).解:過(guò)點(diǎn)D作DE⊥AB,垂足為E∵AB⊥BC,DC⊥BC∴∠B=∠C=∠DEB=90o∴四邊形BCDE是矩形∴ED=BC=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 樣貌特征測(cè)試題及答案
- 北京知識(shí)產(chǎn)權(quán)師培訓(xùn)班課件
- 2025年第一季度護(hù)理管理制度考核試題考題答案
- 營(yíng)養(yǎng)??谱o(hù)士培訓(xùn)考試題及答案
- 醫(yī)院傳染病防控知識(shí)培訓(xùn)考核試題(附答案)
- 護(hù)理導(dǎo)論知識(shí)練習(xí)測(cè)試題(含答案)
- 2024年上海市浦東新區(qū)高橋鎮(zhèn)新益村社區(qū)工作人員考試模擬試題及答案
- 北京房屋測(cè)繪培訓(xùn)課件
- 2025年注冊(cè)會(huì)計(jì)師重點(diǎn)試題帶答案
- 標(biāo)日課件第九課
- 茶葉加工工安全技術(shù)操作規(guī)程
- 2025年云南高考地理試題解讀及答案詳解講評(píng)課件
- 江蘇清泉化學(xué)股份有限公司年產(chǎn)4000噸呋喃、1000噸四氫呋喃丙烷、3000噸四氫呋喃技改項(xiàng)目環(huán)評(píng)資料環(huán)境影響
- 新型醫(yī)藥銷售外包(CSO)行業(yè)跨境出海項(xiàng)目商業(yè)計(jì)劃書
- 口腔診室6S管理
- 2025-2030年中國(guó)外墻外保溫系統(tǒng)行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 文印員考試題庫(kù)及答案
- 安全總監(jiān)考試試題及答案
- XX學(xué)校(幼兒園)食堂管理各崗位廉政(廉潔)風(fēng)險(xiǎn)點(diǎn)及防控措施一覽表
- 鋼結(jié)構(gòu)鋼爬梯包工包料合同范本
- 家庭房屋財(cái)產(chǎn)協(xié)議書
評(píng)論
0/150
提交評(píng)論