基礎(chǔ)強(qiáng)化貴州省福泉市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(詳解版)_第1頁
基礎(chǔ)強(qiáng)化貴州省福泉市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(詳解版)_第2頁
基礎(chǔ)強(qiáng)化貴州省福泉市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(詳解版)_第3頁
基礎(chǔ)強(qiáng)化貴州省福泉市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(詳解版)_第4頁
基礎(chǔ)強(qiáng)化貴州省福泉市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評試卷(詳解版)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

貴州省福泉市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,正方形ABCD中,AB=12,將△ADE沿AE對折至△AEF,延長EF交BC于點G,G剛好是BC邊的中點,則ED的長是()A.2 B.3 C.4 D.52、如圖,在7×7的正方形網(wǎng)格中,每個小正方形的邊長為1,畫一條線段AB=,使點A,B在小正方形的頂點上,設(shè)AB與網(wǎng)格線相交所成的銳角為α,則不同角度的α有(

)A.1種 B.2種 C.3種 D.4種3、如圖,在2×2的正方形網(wǎng)格中有9個格點,已經(jīng)取定點A和B,在余下的點中任取一點C,使△ABC為直角三角形的概率是(

)A. B. C. D.4、我國古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個問題:

“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.水深、葭長各幾何?”.其大意是:如圖,有一個水池,水面是一個邊長為10尺(丈、尺是長度單位,1丈=10尺)的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?若設(shè)這跟蘆葦?shù)拈L度為x尺,根據(jù)題意,所列方程正確的是(

)A.102+(x-1)2=x2 B.102+(x-1)2=(x+1)2C.52+(x-1)2=x2 D.52+(x-1)2=(x+1)25、為⊙外一點,與⊙相切于點,,,則的長為(

)A. B. C. D.6、如圖,長方形中,,,將此長方形折疊,使點與點重合,折痕為,則的長為(

)A.12 B.8 C.10 D.137、如圖,一棵大樹在一次強(qiáng)臺風(fēng)中距地面5m處折斷,倒下后樹頂端著地點A距樹底端B的距離為12m,這棵大樹在折斷前的高度為(

)A.10m B.15m C.18m D.20m第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達(dá)池邊的水面D處,問水的深度是多少?則水深DE為_____尺.2、把一根長12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.3、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______4、如圖,圓柱形無蓋玻璃容器,高18cm,底面周長為60cm,在外側(cè)距下底1cm的點C處有一蜘蛛,與蜘蛛相對的圓柱形容器的上口外側(cè)距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長度為__________cm(容器壁厚度忽略不計).5、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.6、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”,當(dāng),時,陰影部分的面積為________.7、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動了_____米.8、已知,在中,,,,則的面積為__.三、解答題(7小題,每小題10分,共計70分)1、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運(yùn)動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運(yùn)動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為ts.(1)出發(fā)3s后,求PQ的長;(2)當(dāng)點Q在邊BC上運(yùn)動時,出發(fā)多久后,△PQB能形成等腰三角形?(3)當(dāng)點Q在邊CA上運(yùn)動時,求能使△BCQ成為等腰三角形的運(yùn)動時間.2、如圖,中,,,是邊上一點,且,若.求的長.3、如圖是一個長方形的大門,小強(qiáng)拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.4、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計算敵方汽車的速度嗎?5、如圖,在△ABC中,∠C=90°,M是BC的中點,MD⊥AB于D,求證:.6、如圖,已知和中,,,,點C在線段BE上,連接DC交AE于點O.(1)DC與BE有怎樣的位置關(guān)系?證明你的結(jié)論;(2)若,,求DE的長.7、如圖所示的一塊地,,,,,,求這塊地的面積.-參考答案-一、單選題1、C【解析】【分析】連接AG,證明△ABG≌△AFG,得到FG=BG,△ADE沿AE對折至△AEF,則EF=DE,設(shè)DE=x,則EF=x,EC=12-x,則Rt△EGC中根據(jù)勾股定理列方程可求出DE的值.【詳解】如圖,連接AG,∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE對折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共邊,∴△ABG≌△AFG(HL),∵G剛好是BC邊的中點,∴BG=FG=,設(shè)DE=x,則EF=x,EC=12-x,在Rt△EGC中,根據(jù)勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的長是4,答案選C.【考點】本題考查了正方形和全等三角形的綜合知識,根據(jù)勾股定理列方程是本題的解題關(guān)鍵.2、C【解析】【詳解】如圖,(1)當(dāng)AB=時,AB與網(wǎng)格線相交所成的兩個銳角:∠=45°;(2)當(dāng)AB=時,AB與網(wǎng)格線相交所成的銳角∠有2個不同的角度;綜上所述,AB與網(wǎng)格線相交所成的銳角的不同角度有3個.故選C.3、C【解析】【分析】找到可以組成直角三角形的點,根據(jù)概率公式解答即可.【詳解】解:如圖,,,,均可與點和組成直角三角形.,故選:C.【考點】本題考查了概率公式,解題的關(guān)鍵是掌握如果一個事件有種可能,而且這些事件的可能性相同,其中事件出現(xiàn)種結(jié)果,那么事件的概率(A).4、C【解析】【分析】設(shè)這跟蘆葦?shù)拈L度為x尺,根據(jù)勾股定理,即可求解.【詳解】解:設(shè)這跟蘆葦?shù)拈L度為x尺,根據(jù)題意得:52+(x-1)2=x2故選:C【考點】本題主要考查了勾股定理的應(yīng)用,明確題意,準(zhǔn)確構(gòu)造直角三角形是解題的關(guān)鍵.5、A【解析】【分析】連接OT,根據(jù)切線的性質(zhì)求出求,結(jié)合利用含的直角三角形的性質(zhì)求出OT,再利用勾股定理求得PT的長度即可.【詳解】解:連接OT,如下圖.∵與⊙相切于點,∴.∵,,∴,∴.故選:A.【考點】本題考查了切線的性質(zhì),含的直角三角形的性質(zhì),勾股定理,求出OT的長度是解答關(guān)鍵.6、D【解析】【分析】設(shè)BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設(shè)BE為x,則DE為x,AE為25-x∵四邊形為長方形∴∠EAB=90°∴在中由勾股定理有即化簡得解得故選:D.【考點】本題考查了折疊問題求折痕或其他邊長,主要可根據(jù)折疊前后兩圖形的全等條件,把某個直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進(jìn)而可以求解.7、C【解析】【詳解】∵樹的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴這棵樹原來的高度=BC+AC=5+13=18m.故選C.二、填空題1、12【解析】【分析】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.2、直角三角形【解析】【分析】首先計算出第三條鐵絲的長度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.3、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長,進(jìn)而可得出BD的長,根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.4、34【解析】【分析】首先展開圓柱的側(cè)面,即是矩形,接下來根據(jù)兩點之間線段最短,可知CF的長即為所求;然后結(jié)合已知條件求出DF與CD的長,再利用勾股定理進(jìn)行計算即可.【詳解】如圖為圓柱形玻璃容器的側(cè)面展開圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長度是34cm.故答案為34.【考點】此題是有關(guān)最短路徑的問題,關(guān)鍵在于把立體圖形展開成平面圖形,找出最短路徑;5、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.6、24【解析】【分析】根據(jù)勾股定理得到AC2=AB2-BC2,先求解AC,再根據(jù)陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點】本題考查的是勾股定理、半圓面積計算,掌握勾股定理和半圓面積公式是解題的關(guān)鍵.7、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.8、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.三、解答題1、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當(dāng)t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結(jié)論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質(zhì)可得到BP=BQ,可得到關(guān)于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角形的性質(zhì)可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關(guān)于t的方程,可求得t的值.(1)當(dāng)t=3時,則AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由題意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,當(dāng)△PQB為等腰三角形時,則有BP=BQ,即16﹣t=2t,解得t=,∴出發(fā)秒后△PQB能形成等腰三角形;(3)①當(dāng)CQ=BQ時,如圖1所示,則∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②當(dāng)CQ=BC時,如圖2所示,則BC+CQ=24,∴t=24÷2=12秒.③當(dāng)BC=BQ時,如圖3所示,過B點作BE⊥AC于點E,則BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.綜上所述:當(dāng)t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【考點】本題考查了勾股定理、等腰三角形的性質(zhì)、方程思想及分類討論思想等知識.用時間t表示出相應(yīng)線段的長,化“動”為“靜”是解決這類問題的一般思路,注意方程思想的應(yīng)用.2、AC2=CE2+AE2=102+24∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能趕回巢中.【考點】本題考查了勾股定理的應(yīng)用.關(guān)鍵是構(gòu)造直角三角形,同時注意:時間=路程÷速度.2.2【解析】【分析】過點作于點,則,,結(jié)合可得出,進(jìn)而可得出,在中,利用勾股定理可求出的長,即,結(jié)合可求出的長.【詳解】解:過點作于點,如圖所示.,,,.,,.在中,∵,,即,,.又,,.【考點】本題考查了勾股定理、等腰三角形的性質(zhì)以及三角形內(nèi)角和定理,在中,利用勾股定理求出的長是解題的關(guān)鍵.3、尺【解析】【分析】根據(jù)題中所給的條件可知,竹竿斜放恰好等于門的對角線長,可與門的寬和高構(gòu)成直角三角形,運(yùn)用勾股定理可求出門高,進(jìn)而解答即可.【詳解】解:設(shè)門高為x尺,則竹竿長為(x+1)尺,根據(jù)勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,∴門高7.5尺,竹

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論