




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山西省原平市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在△ABC中,∠ABC的平分線與△ABC的外角平分線相交于點D,,則∠D的度數(shù)是(
)A.44° B.24° C.22° D.20°2、如圖,EF與的邊BC,AC相交,則與的大小關(guān)系為(
).A. B.C. D.大小關(guān)系取決于的度數(shù)3、在四邊形ABCD中,如果∠B+∠C=180°,那么
()A.AB∥CD B.AD∥BC C.AB與CD相交 D.AB與DC垂直4、如圖,下列推理正確的是(
)A.∵,∴ B.∵,∴C.∵,∴ D.∵,∴5、如圖,將一副直角三角板按如圖所示疊放,其中,,,則的大小是(
)A. B. C. D.6、如圖,、是的外角角平分線,若,則的大小為(
)A. B. C. D.7、如圖,點E在的延長線上,下列條件不能判斷的是(
)A. B. C. D.8、兩個直角三角板如圖擺放,其中,,,AB與DF交于點M.若,則的大小為(
)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,直線a,b與直線c,d相交,若∠1=∠2,∠3=70°,則∠4的度數(shù)是;2、如圖,若AB⊥BC,BC⊥CD,則直線AB與CD的位置關(guān)系是______.3、如圖,在ΔABC中,E、F分別是AB、AC上的兩點,∠1+∠2=235°,則∠A=____度.4、如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=______度.5、如圖,射線AB與射線CD平行,點F為射線AB上的一定點,連接CF,點P是射線CD上的一個動點(不包括端點C),將沿PF折疊,使點C落在點E處.若,當(dāng)點E到點A的距離最大時,_____.6、一副三角板按如圖所示疊放在一起,其中點B、D重合,若固定三角形AOB,改變?nèi)前錋CD的位置(其中A點位置始終不變),下列條件①∠BAD=30°;②∠BAD=60°;③∠BAD=120°;④∠BAD=150°中,能得到的CD∥AB的有__________.(填序號)7、如圖,用鐵絲折成一個四邊形ABCD(點C在直線BD的上方),且∠A=70°,∠BCD=120°,若使∠ABC、∠ADC平分線的夾角∠E的度數(shù)為100°,可保持∠A不變,將∠BCD______(填“增大”或“減小”)________°.三、解答題(7小題,每小題10分,共計70分)1、如圖,△ABC中,∠BAC=90°,點D是BC上的一點,將△ABC沿AD翻折后,點B恰好落在線段CD上的B'處,且AB'平分∠CAD.求∠BAB'的度數(shù).2、如圖,已知AB∥CD,AD和BC交于點O,E為OC上一點,F(xiàn)為CD上一點,且∠CEF+∠BOD=180°.說明∠EFC=∠A的理由.3、如圖(1)所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;(2)請你直接利用以上結(jié)論,解決以下三個問題:①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、圖(1)XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX=__________°;②如圖(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);(寫出解答過程)③如圖(4),∠ABD,∠ACD的10等分線相交于點G1、G2、G9,若∠BDC=140°,∠BG1C=77°,則∠A的度數(shù)=__________°.4、如圖,已知AB∥CD,AB=CD,BE=CF.求證:(1)△ABF≌△DCE;(2)AF∥DE.5、如圖,已知于點,于點,,試說明.解:因為(已知),所以().同理.所以().即.因為(已知),所以().所以().6、問題情景:如圖1,在同一平面內(nèi),點和點分別位于一塊直角三角板的兩條直角邊,上,點與點在直線的同側(cè),若點在內(nèi)部,試問,與的大小是否滿足某種確定的數(shù)量關(guān)系?(1)特殊探究:若,則_________度,________度,_________度;(2)類比探索:請猜想與的關(guān)系,并說明理由;(3)類比延伸:改變點的位置,使點在外,其它條件都不變,判斷(2)中的結(jié)論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出,與滿足的數(shù)量關(guān)系式.7、【教材呈現(xiàn)】如圖是華師版七年級下冊數(shù)學(xué)教材第76頁的部分內(nèi)容.請根據(jù)教材提示,結(jié)合圖①,將證明過程補充完整.【結(jié)論應(yīng)用】(1)如圖②,在△中,∠=60°,平分∠,平分∠,求∠的度數(shù).(2)如圖③,將△的∠折疊,使點落在△外的點處,折痕為.若∠=,∠=,∠=,則、、滿足的等量關(guān)系為(用、、的代數(shù)式表示).-參考答案-一、單選題1、C【解析】【分析】根據(jù)角平分線定義可得∠CBD=∠ABC,根據(jù)三角形外角性質(zhì)表示出∠DCE,然后整理即可得到∠D=∠A,從而求出度數(shù).【詳解】解:∵BD平分∠ABC,∴∠CBD=∠ABC,∵CD是△ABC的外角平分線,∴∠DCE=∠ACE,∵∠DCE=∠CBD+∠D=∠ABC+∠D,∠ACE=∠A+∠ABC,∴∠ABC+∠D=(∠ABC+∠A).∴∠D=∠A=22°.故選:C.【考點】此題考查了角平分線的計算,三角形外角的性質(zhì),熟記三角形外角性質(zhì)是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)對頂角相等和三角形的內(nèi)角和定理即可得結(jié)論.【詳解】解:∵∠3=∠CEF,∠4=∠CFE∴∠CEF+∠CFE+∠C=∠3+∠4+∠C=180°又∵∠1+∠2+∠C=180°∴故選:C【考點】本題主要考查對頂角的性質(zhì)和三角形的內(nèi)角和定理,掌握對頂角的性質(zhì)和三角形的內(nèi)角和定理是解題的關(guān)鍵.3、A【解析】【分析】∠B與∠C是直線AB,CD被直線BC所截構(gòu)成的同旁內(nèi)角,根據(jù)∠B+∠C=180°,得到AB∥CD.【詳解】∵∠B+∠C=180°,∴AB∥CD(同旁內(nèi)角互補,兩直線平行).故選A.【考點】正解找出“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關(guān)鍵,不能遇到相等或互補關(guān)系的角就誤認(rèn)為具有平行關(guān)系,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行.4、B【解析】【分析】根據(jù)平行線的判定判斷即可.【詳解】解:A、由∠2=∠4不能推出AD∥BC,故本選項錯誤;B、∵∠1=∠3,∴AD∥BC,故本選項正確;C、由∠4+∠D=180°不能推出AD∥BC,故本選項錯誤;D、由∠4+∠B=180°不能推出AD∥BC,故本選項錯誤;故選:B.【考點】本題考查了平行線的判定的應(yīng)用,注意:同旁內(nèi)角互補,兩直線平行,內(nèi)錯角相等,兩直線平行.5、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可得∠BAC=45°,根據(jù)鄰補角互補可得∠EAF=135°,然后再利用三角形的外角的性質(zhì)可得∠AFD=135°+30°=165°.即可.【詳解】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故選:C.【考點】此題主要考查了三角形的內(nèi)角和,三角形的外角的性質(zhì),關(guān)鍵是掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.6、B【解析】【分析】首先根據(jù)三角形內(nèi)角和與∠P得出∠PBC+∠PCB,然后根據(jù)角平分線的性質(zhì)得出∠ABC和∠ACB的外角和,進而得出∠ABC+∠ACB,即可得解.【詳解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分線∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故選:B.【考點】此題主要考查角平分線以及三角形內(nèi)角和的運用,熟練掌握,即可解題.7、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當(dāng)∠5=∠B時,AB∥CD,不合題意;B、當(dāng)∠1=∠2時,AB∥CD,不合題意;C、當(dāng)∠B+∠BCD=180°時,AB∥CD,不合題意;D、當(dāng)∠3=∠4時,AD∥CB,符合題意;故選:D.【考點】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關(guān)鍵.8、C【解析】【分析】根據(jù),可得再根據(jù)三角形內(nèi)角和即可得出答案.【詳解】由圖可得∵,∴∴故選:C.【考點】本題考查了平行線的性質(zhì)和三角形的內(nèi)角和,掌握平行線的性質(zhì)和三角形的內(nèi)角和是解題的關(guān)鍵.二、填空題1、110°【解析】【詳解】試題解析:∵∠1=∠2,∴ab,∴∠3=∠5,故答案為點睛:同位角相等,兩直線平行.2、AB∥CD【解析】【詳解】∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案為AB∥CD.3、55【解析】【分析】根據(jù)三角形內(nèi)角和定理可知,要求∠A只要求出∠AEF+∠AFE的度數(shù)即可.【詳解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°?235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形內(nèi)角和定理)∴∠A=180°?125°=55°,故答案為:55°【考點】本題是有關(guān)三角形角的計算問題.主要考察三角形內(nèi)角和定理的應(yīng)用和計算,找到∠A所在的三角形是關(guān)鍵.4、120【解析】【分析】根基三角形全等的性質(zhì)得到∠C=∠C′=24°,再根據(jù)三角形的內(nèi)角和定理求出答案.【詳解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案為:120.【考點】此題考查三角形全等的性質(zhì)定理:全等三角形的對應(yīng)角相等,三角形的內(nèi)角和定理.5、##59度【解析】【分析】利用三角形三邊關(guān)系可知:當(dāng)E落在AB上時,AE距離最大,利用且,得到,再根據(jù)折疊性質(zhì)可知:,利用補角可知,進一步可求出.【詳解】解:利用兩邊之和大于第三邊可知:當(dāng)E落在AB上時,AE距離最大,如圖:∵且,∴,∵折疊得到,∴,∵,∴.故答案為:【考點】本題考查三角形的三邊關(guān)系,平行線的性質(zhì),折疊的性質(zhì),補角,角平分線,解題的關(guān)鍵是找出:當(dāng)E落在AB上時,AE距離最大,再解答即可.6、①④【解析】【分析】分兩種情況,根據(jù)CD∥AB,利用平行線的性質(zhì),即可得到∠BAD的度數(shù).【詳解】解:如圖所示:當(dāng)CD∥AB時,∠BAD=∠D=30°;如圖所示,當(dāng)AB∥CD時,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;∴∠BAD=150°或∠BAD=30°.故答案為:①④.【考點】本題主要考查了平行線的判定,平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系,平行線的性質(zhì)是由直線的平行關(guān)系來尋找角的數(shù)量關(guān)系.7、
增大
10【解析】【分析】利用三角形的外角性質(zhì)先求得∠ABE+∠ADE=30°,根據(jù)角平分線的定義得到∠ABC+∠ADC=60°,再利用三角形的外角性質(zhì)求解即可.【詳解】解:如圖,連接AE并延長,連接AC并延長,∠BED=∠BEF+∠DEF=∠ABE+∠BAD+∠ADE=100°,∵∠BAD=70°,∴∠ABE+∠ADE=30°,∵BE,DE分別是∠ABC、∠ADC平分線,∴∠ABC+∠ADC=2(∠ABE+∠ADE)=60°,同上可得,∠BCD=∠BAD+∠ABC+∠ADC=130°,130°-120°=10°,∴∠BCD增大了10°.故答案為:增大,10.【考點】本題考查了三角形的外角性質(zhì),三角形的內(nèi)角和定理,角平分線的定義等知識,熟練運用題目中所給的結(jié)論是解題的關(guān)鍵.三、解答題1、60°【解析】【分析】由折疊和角平分線可求∠BAD=30°,即可求出∠BAB'的度數(shù).【詳解】解:由折疊可知,∠BAD=∠B'AD,∵AB'平分∠CAD.∴∠B'AC=∠B'AD,∴∠BAD=∠B'AC=∠B'AD,∵∠BAC=90°,∴∠BAD=∠B'AC=∠B'AD=30°,∴∠BAB'=60°.【考點】本題考查了折疊和角平分線,解題關(guān)鍵是掌握折疊角相等和角平分線的性質(zhì).2、見解析【解析】【分析】由AB∥DC可得到∠A與∠D的關(guān)系,再由∠CEF+∠BOD=180°可得到∠CEF=∠COD,根據(jù)平行線的判定定理可得EF∥AD,可得∠D與∠EFC的關(guān)系,等量代換可得結(jié)論.【詳解】證明:∵AB∥CD,∴∠A=∠D,∵∠CEF+∠BOD=180°,∠BOD+∠DOC=180°,∴∠CEF=∠DOC.∴EF∥AD.∴∠EFC=∠D,∵∠A=∠D,∴∠EFC=∠A.【考點】本題考查了平行線的判定和性質(zhì),掌握平行線的性質(zhì)和判定方法是解決本題的關(guān)鍵.3、(1)∠BDC=∠A+∠B+∠C,詳見解析;(2)①40;②∠DCE=90°;③70【解析】【分析】(1)根據(jù)題意觀察圖形連接AD并延長至點F,根據(jù)一個三角形的外角等于與它不相鄰的兩個內(nèi)角的和可證∠BDC=∠BDF+∠CDF;(2)①由(1)的結(jié)論可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②結(jié)合圖形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的結(jié)論可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.③由②方法,進而可得答案.【詳解】解:(1)連接AD并延長至點F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC+∠B+∠C;(2)①由(1)的結(jié)論易得:∠ABX+∠ACX+∠A=∠BXC,∵∠A=50°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣50°=40°.故答案是:40;②由(1)的結(jié)論易得∠DBE=∠DAE+∠ADB+∠AEB,∠DCE=∠ADC+∠AEC+∠A∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB∴∠DCE=(∠ADB+∠AEB)+∠A=40°+50°=90°;③由②知,∠BG1C=(∠ABD+∠ACD)+∠A,∵∠BG1C=77°,∴設(shè)∠A為x°,∵∠ABD+∠ACD=140°﹣x°,∴(140﹣x)+x=77,∴14﹣x+x=77,∴x=70,∴∠A為70°.故答案是:70.【考點】本題考查三角形外角的性質(zhì),三角形的內(nèi)角和定理的應(yīng)用,能求出∠BDC=∠A+∠B+∠C是解答的關(guān)鍵,注意:三角形的內(nèi)角和等于180°,三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.4、(1)見解析;(2)見解析【解析】【分析】(1)先由平行線的性質(zhì)得∠B=∠C,再由得出,從而利用SAS判定△ABF≌△DCE;(2)根據(jù)全等三角形的性質(zhì)得∠AFB=∠DEC,由等角的補角相等可得∠AFE=∠DEF,再由平行線的判定可得結(jié)論.(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∵∠AFB+∠AFE=180°,∠DEC+∠DEF=180°,∴∠AFE=∠DEF,∴AF∥DE.【考點】本題考查了平行線的判定、全等三角形的判定與性質(zhì),證明△ABF≌△DCE是解題的關(guān)鍵.5、垂直的定義;等量代換;等式的性質(zhì)1;內(nèi)錯角相等,兩直線平行【解析】【分析】根據(jù)垂直定義得出,求出,根據(jù)平行線的判定推出即可.【詳解】解:因為(已知),所以(垂直的定義),同理.所以(等量代換),即.因為(已知),所以(等式的性質(zhì),所以(內(nèi)錯角相等,兩直線平行).故答案為:垂直的定義;等量代換;等式的性質(zhì)1;內(nèi)錯角相等,兩直線平行【考點】本題考查了垂直定義和平行線的判定的應(yīng)用,熟練掌握平行線的判定是解題關(guān)鍵.6、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,證明見解析;(3)結(jié)論不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根據(jù)三角形內(nèi)角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根據(jù)三角形內(nèi)角和定理進行等量轉(zhuǎn)換,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同樣的方法進行等量轉(zhuǎn)換,求解即可判定.【詳解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;
(2)猜想:∠ABP+∠ACP=90°-∠A;
證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院科室建設(shè)與運營管理
- 如何找到醫(yī)學(xué)
- 血管灌注治療技術(shù)
- 實驗工作月度匯報
- 薪酬等級結(jié)構(gòu)體系解析
- 偏離系數(shù)趣味講解
- 為醫(yī)院添光彩
- 數(shù)字化建設(shè)講解
- 平安經(jīng)營成果匯報
- 小學(xué)課程改革實施路徑解析
- 海底撈培訓(xùn)體系
- 河南近10年中考真題英語2014-2023年含答案
- 影視藝術(shù)欣賞課程(教案)
- 人工智能技術(shù)在司法領(lǐng)域的應(yīng)用與法律挑戰(zhàn)
- 消防維保方案(消防維保服務(wù))(技術(shù)標(biāo))
- 2023智聯(lián)招聘行測題庫
- 隧道洞渣加工石料組織管理方案
- 音樂美學(xué).課件
- 健康體檢證明
- 北京大學(xué)信息管理系《圖書館學(xué)概論》精品課件資料
- 2021年江西外語外貿(mào)職業(yè)學(xué)院教師招聘試題及答案解析
評論
0/150
提交評論