數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸專(zhuān)題資料真題解析_第1頁(yè)
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸專(zhuān)題資料真題解析_第2頁(yè)
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸專(zhuān)題資料真題解析_第3頁(yè)
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸專(zhuān)題資料真題解析_第4頁(yè)
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸專(zhuān)題資料真題解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸專(zhuān)題資料真題解析一、解答題1.如圖,直線,、是、上的兩點(diǎn),直線與、分別交于點(diǎn)、,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.2.(1)如圖1所示,△ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長(zhǎng)線交于點(diǎn)F;①若∠B=90°則∠F=;②若∠B=a,求∠F的度數(shù)(用a表示);(2)如圖2所示,若點(diǎn)G是CB延長(zhǎng)線上任意一動(dòng)點(diǎn),連接AG,∠AGB與∠GAB的角平分線交于點(diǎn)H,隨著點(diǎn)G的運(yùn)動(dòng),∠F+∠H的值是否變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出其值.3.【問(wèn)題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數(shù)量關(guān)系?并說(shuō)明理由;【問(wèn)題遷移】如圖2,DF∥CE,點(diǎn)P在三角板AB邊上滑動(dòng),∠PCE=∠α,∠PDF=∠β.(1)當(dāng)點(diǎn)P在E、F兩點(diǎn)之間運(yùn)動(dòng)時(shí),如果α=30°,β=40°,則∠DPC=°.(2)如果點(diǎn)P在E、F兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、E、F四點(diǎn)不重合),寫(xiě)出∠DPC與α、β之間的數(shù)量關(guān)系,并說(shuō)明理由.(圖1)(圖2)4.在中,,,點(diǎn)在直線上運(yùn)動(dòng)(不與點(diǎn)、重合),點(diǎn)在射線上運(yùn)動(dòng),且,設(shè).(1)如圖①,當(dāng)點(diǎn)在邊上,且時(shí),則__________,__________;(2)如圖②,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的左側(cè)時(shí),其他條件不變,請(qǐng)猜想和的數(shù)量關(guān)系,并說(shuō)明理由;(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的右側(cè)時(shí),其他條件不變,和還滿足(2)中的數(shù)量關(guān)系嗎?請(qǐng)?jiān)趫D③中畫(huà)出圖形,并給予證明.(畫(huà)圖痕跡用黑色簽字筆加粗加黑)5.已知,,點(diǎn)為射線上一點(diǎn).(1)如圖1,寫(xiě)出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點(diǎn)在延長(zhǎng)線上時(shí),求證:;(3)如圖3,平分,交于點(diǎn),交于點(diǎn),且:,,,求的度數(shù).6.(數(shù)學(xué)經(jīng)驗(yàn))三角形的中線,角平分線,高是三角形的重要線段,我們知道,三角形的3條高所在直線交于同一點(diǎn).(1)①如圖1,△ABC中,∠A=90°,則△ABC的三條高所在的直線交于點(diǎn);②如圖2,△ABC中,∠BAC>90°,已知兩條高BE,AD,請(qǐng)你僅用一把無(wú)刻度的直尺(僅用于過(guò)任意兩點(diǎn)作直線、連接任意兩點(diǎn)、延長(zhǎng)任意線段)畫(huà)出△ABC的第三條高.(不寫(xiě)畫(huà)法,保留作圖痕跡).(綜合應(yīng)用)(2)如圖3,在△ABC中,∠ABC>∠C,AD平分∠BAC,過(guò)點(diǎn)B作BE⊥AD于點(diǎn)E.①若∠ABC=80°,∠C=30°,則∠EBD=;②請(qǐng)寫(xiě)出∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系,并說(shuō)明理由.(拓展延伸)(3)三角形的中線將三角形分成面積相等的兩部分,如果兩個(gè)三角形的高相同,則他們的面積比等于對(duì)應(yīng)底邊的比.如圖4,M是BC上一點(diǎn),則有.如圖5,△ABC中,M是BC上一點(diǎn)BM=BC,N是AC的中點(diǎn),若三角形ABC的面積是m請(qǐng)直接寫(xiě)出四邊形CMDN的面積.(用含m的代數(shù)式表示)7.如圖1,將一副三角板與三角板擺放在一起;如圖2,固定三角板,將三角板繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角().(1)當(dāng)________度時(shí),;當(dāng)________度時(shí);(2)當(dāng)?shù)囊贿吪c的某一邊平行(不共線)時(shí),直接寫(xiě)出旋轉(zhuǎn)角的所有可能的度數(shù);(3)當(dāng),連接,利用圖4探究的度數(shù)是否發(fā)生變化,并給出你的證明.8.(概念認(rèn)識(shí))如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問(wèn)題解決)(1)如圖②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分線BD交AC于點(diǎn)D,求∠BDC的度數(shù);(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰BC三分線和∠ACB鄰BC三分線,且∠BPC=140°,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點(diǎn)P.若∠A=m°(),∠B=54°,直接寫(xiě)出∠BPC的度數(shù).(用含m的代數(shù)式表示)9.已如在四邊形中,.(1)如圖1,若,則________.(2)如圖2,若、分別平分、,判斷與位置關(guān)系并證明理由.(3)如圖3,若、分別五等分、(即,),則_______.10.已知:直線l分別交AB、CD與E、F兩點(diǎn),且AB∥CD.(1)說(shuō)明:∠1=∠2;(2)如圖2,點(diǎn)M、N在AB、CD之間,且在直線l左側(cè),若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度數(shù);②如圖3,若EP平分∠AEM,F(xiàn)P平分∠CFN,求∠P的度數(shù);(3)如圖4,∠2=80°,點(diǎn)G在射線EB上,點(diǎn)H在AB上方的直線l上,點(diǎn)Q是平面內(nèi)一點(diǎn),連接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接寫(xiě)出∠GQH的度數(shù).【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過(guò)點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問(wèn)題.2.(1)①45°;②∠F=a;(2)∠F+∠H的值不變,是定值180°.【分析】(1)①②依據(jù)AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依據(jù)∠CAE是△ABC解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不變,是定值180°.【分析】(1)①②依據(jù)AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依據(jù)∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根據(jù)∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;(2)由(1)可得,∠F=∠ABC,根據(jù)角平分線的定義以及三角形內(nèi)角和定理,即可得到∠H=90°+∠ABG,進(jìn)而得到∠F+∠H=90°+∠CBG=180°.【詳解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,故答案為45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;(2)由(1)可得,∠F=∠ABC,∵∠AGB與∠GAB的角平分線交于點(diǎn)H,∴∠AGH=∠AGB,∠GAH=∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,∴∠F+∠H的值不變,是定值180°.【點(diǎn)睛】本題主要考查了三角形內(nèi)角和定理、三角形外角性質(zhì)的綜合運(yùn)用,熟練運(yùn)用定理是解題的關(guān)鍵.3.∠DPC=α+β,理由見(jiàn)解析;(1)70;(2)∠DPC=α–β,理由見(jiàn)解析.【解析】(1)過(guò)P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由見(jiàn)解析;(1)70;(2)∠DPC=α–β,理由見(jiàn)解析.【解析】(1)過(guò)P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【問(wèn)題探究】解:∠DPC=α+β如圖,過(guò)P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【問(wèn)題遷移】(1)70(圖1)(圖2)(2)如圖1,∠DPC=β-α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β-α如圖2,∠DPC=α-β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α-β4.(1)60,30;(2)∠BAD=2∠CDE,證明見(jiàn)解析;(3)成立,∠BAD=2∠CDE,證明見(jiàn)解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見(jiàn)解析;(3)成立,∠BAD=2∠CDE,證明見(jiàn)解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質(zhì)得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結(jié)論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結(jié)論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),從圖形中得出相關(guān)角度之間的關(guān)系是解題的關(guān)鍵.5.(1),證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【分析】(1)過(guò)E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H解析:(1),證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【分析】(1)過(guò)E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進(jìn)而得到∠EAF=∠AED+∠EDG;(3)設(shè)∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進(jìn)而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根據(jù)三角形內(nèi)角和定理,得到∠EKD的度數(shù).【詳解】解:(1)∠AED=∠EAF+∠EDG.理由:如圖1,過(guò)E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)證明:如圖2,設(shè)CD與AE交于點(diǎn)H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可設(shè)∠EAI=∠BAI=α,則∠BAE=2α,如圖3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),三角形外角性質(zhì)以及三角形內(nèi)角和定理的綜合應(yīng)用,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用三角形外角性質(zhì)進(jìn)行計(jì)算求解.解題時(shí)注意:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.6.(1)①A;②見(jiàn)解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長(zhǎng)BE,DA,兩者交于F,連接CF交BA的延長(zhǎng)線解析:(1)①A;②見(jiàn)解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長(zhǎng)BE,DA,兩者交于F,連接CF交BA的延長(zhǎng)線于H,CH即為所求;(2)①由三角形內(nèi)角和定理和角平分線的性質(zhì)可以得出∠BAE=∠BAC=35°,再由直角三角形的性質(zhì)得∠ABE=55°,即可求解;②由三角形內(nèi)角和定理和角平分線的性質(zhì)求解即可;(3)連接CD,由中線的性質(zhì)得S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,S△ABN=S△CBN=m,再求出S△CDM=S△BCD=,S△ACM=S△ABC=m,利用面積關(guān)系求解即可.【詳解】解:(1)①∵直角三角形三條高的交點(diǎn)為直角頂點(diǎn),∠A=90°,∴△ABC的三條高所在直線交于點(diǎn)A,故答案為:A;②如圖,分別延長(zhǎng)BE,DA,兩者交于F,連接CF交BA的延長(zhǎng)線于H,CH即為所求;(2)①∵∠ABC=80°,∠ACB=30°,∴∠BAC=70°,∵AD平分∠BAC,∴∠BAE=∠BAC=35°,∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣35°=55°,∴∠EBD=∠ABC﹣∠ABE=80°﹣55°=25°,故答案為:25°;②∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系為:2∠EBD=∠ABC﹣∠ACB∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣∠BAD,∴∠EBD=∠ABC﹣∠ABE=∠ABC+∠BAD﹣90°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAD=90°﹣∠ABC﹣∠ACB,∴∠EBD=∠ABC+∠BAD﹣90°=∠ABC+90°﹣∠ABC﹣∠C﹣90°=∠ABC﹣∠C,∴2∠EBD=∠ABC﹣∠ACB,故答案為:2∠EBD=∠ABC﹣∠ACB;(3)連接CD,如圖所示:∵N是AC的中點(diǎn),∴,∴S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,∵△ABC的面積是m,∴S△ABN=S△CBN=m,∴S△BCD=S△ABD=m﹣a,∵BM=BC,∴,∴,,∴S△CDM=3S△BDM,S△ACM=3S△ABM,∴S△CDM=S△BCD=×(m﹣a)=,S△ACM=S△ABC=m,∵S△ACM=S四邊形CMDN+S△ADN=S△CDM+S△CDN+S△ADN,即:,解得:a=,∴S四邊形CMDN=S△CDM+S△CDN=,【點(diǎn)睛】本題主要考查了三角形的高,三角形的中線,三角形內(nèi)角和,三角形面積,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.7.(1)105,15;(2)旋轉(zhuǎn)角的所有可能的度數(shù)是:15°,45°,105°,135°,150°;(3),保持不變;見(jiàn)解析【分析】(1)三角板ADE順時(shí)針旋轉(zhuǎn)后的三角板為,當(dāng)時(shí),,則可求得旋轉(zhuǎn)角解析:(1)105,15;(2)旋轉(zhuǎn)角的所有可能的度數(shù)是:15°,45°,105°,135°,150°;(3),保持不變;見(jiàn)解析【分析】(1)三角板ADE順時(shí)針旋轉(zhuǎn)后的三角板為,當(dāng)時(shí),,則可求得旋轉(zhuǎn)角度;當(dāng)∥BC時(shí),,則可求得旋轉(zhuǎn)角度;(2)分五種情況考慮:AD∥BC,DE∥AB,DE∥BC,DE∥AC,AE∥BC,即可分別求出旋轉(zhuǎn)角;(3)設(shè)BD分別交、于點(diǎn)M、N,利用三角形的內(nèi)外角的相等關(guān)系分別得出:及,由的內(nèi)角和為180°,即可得出結(jié)論.【詳解】(1)三角板ADE順時(shí)針旋轉(zhuǎn)后的三角板為,當(dāng)時(shí),如圖,∵,∠EAD=45°∴即旋轉(zhuǎn)角當(dāng)時(shí),如圖,則∴=45°-30°=15°即旋轉(zhuǎn)角°故答案為:105,15(2)當(dāng)?shù)囊贿吪c的某一邊平行(不共線)時(shí),有五種情況當(dāng)AD∥BC時(shí),由(1)知旋轉(zhuǎn)角為15°;如圖(1),當(dāng)DE∥AB時(shí),旋轉(zhuǎn)角為45°;當(dāng)DE∥BC時(shí),由AD⊥DE,則有AD⊥BC,此時(shí)由(1)知,旋轉(zhuǎn)角為105°;如圖(2),當(dāng)DE∥AC時(shí),則旋轉(zhuǎn)角為135°;如圖(3),當(dāng)AE∥BC時(shí),則旋轉(zhuǎn)角為150°;所以旋轉(zhuǎn)角的所有可能的度數(shù)是:15°,45°,105°,135°,150°(3)當(dāng),,保持不變;理由如下:設(shè)BD分別交、于點(diǎn)M、N,如圖在中,,,【點(diǎn)睛】本題考查了圖形旋轉(zhuǎn)的性質(zhì),三角形內(nèi)角和定理,三角形的外角與不相鄰的兩個(gè)內(nèi)角的相等關(guān)系等知識(shí),注意旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心,旋轉(zhuǎn)方向和旋轉(zhuǎn)角度.8.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫(huà)圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫(huà)圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進(jìn)而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點(diǎn).分四種情況畫(huà)圖:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),再根據(jù),,根據(jù)三角形外角性質(zhì),即可求出的度數(shù).【詳解】解:(1)如圖,當(dāng)BD是“鄰AB三分線”時(shí),;當(dāng)BD是“鄰BC三分線”時(shí),;(2)在△BPC中,∵,∴,又∵BP、CP分別是鄰BC三分線和鄰BC三分線,∴,∴,∴,在△ABC中,,∴.(3)分4種情況進(jìn)行畫(huà)圖計(jì)算:情況一:如圖①,當(dāng)BP和CP分別是“鄰AB三分線”、“鄰AC三分線”時(shí),∴;情況二:如圖②,當(dāng)BP和CP分別是“鄰BC三分線”、“鄰CD三分線”時(shí),∴;情況三:如圖③,當(dāng)BP和CP分別是“鄰BC三分線”、“鄰AC三分線”時(shí),∴;情況四:如圖④,當(dāng)BP和CP分別是“鄰AB三分線”、“鄰CD三分線”時(shí),;綜上所述:的度數(shù)為:或或或.【點(diǎn)睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握并靈活運(yùn)用三角形的外角性質(zhì),注意要分情況討論.9.(1)70°;(2)DE∥BF,證明見(jiàn)解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計(jì)算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF解析:(1)70°;(2)DE∥BF,證明見(jiàn)解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計(jì)算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF+∠CDE=90°,從而推出

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論