山東省臨清市中考數(shù)學真題分類(平行線的證明)匯編專題攻克試題(含答案及解析)_第1頁
山東省臨清市中考數(shù)學真題分類(平行線的證明)匯編專題攻克試題(含答案及解析)_第2頁
山東省臨清市中考數(shù)學真題分類(平行線的證明)匯編專題攻克試題(含答案及解析)_第3頁
山東省臨清市中考數(shù)學真題分類(平行線的證明)匯編專題攻克試題(含答案及解析)_第4頁
山東省臨清市中考數(shù)學真題分類(平行線的證明)匯編專題攻克試題(含答案及解析)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省臨清市中考數(shù)學真題分類(平行線的證明)匯編專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,直線a、b被直線c所截.若∠1=55°,則∠2的度數(shù)是(

)時能判定a∥b.A.35° B.45° C.125° D.145°2、用反證法證明命題“三角形中必有一個內(nèi)角小于或等于60°”時,首先應該假設這個三角形中()A.有一個內(nèi)角小于60° B.每一個內(nèi)角都小于60°C.有一個內(nèi)角大于60° D.每一個內(nèi)角都大于60°3、將一副三角板()按如圖所示方式擺放,使得,則等于()A. B. C. D.4、如圖,直線,則(

).A. B. C. D.5、如圖,點E在射線AB上,要ADBC,只需(

)A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°6、如圖,結合圖形作出了如下判斷或推理:①如圖甲,如果,為垂足,那么點到的距離等于,兩點間的距離;②如圖乙,如果,那么;③如圖丙,如果,,那么;④如圖丁,如果,,那么.其中正確的有(

)A.1個 B.2個 C.3個 D.4個7、如圖,∠B=∠C,則∠ADC與∠AEB的大小關系是(

)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關系不確定8、將一副三角板的直角頂點重合按如圖放置,小明得到下列結論:①如果∠2=30°,則AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,則∠2=30°;④如果∠CAD=150°,則∠4=∠C.其中正確的結論有()A.①② B.①②③ C.①③④ D.①②④第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,將沿翻折,頂點均落在O處,且與重合于線段,測得,則________度.2、如圖a是長方形紙帶,∠DEF=16°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數(shù)是__.3、下圖是某工人加工的一個機器零件(數(shù)據(jù)如圖),經(jīng)過測量不符合標準.標準要求是:,且、、保持不變?yōu)榱诉_到標準,工人在保持不變情況下,應將圖中____(填“增大”或“減小”)_____度.4、如圖,點O是△ABC的三條角平分線的交點,連結AO并延長交BC于點D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點N,OH⊥BC于點H,有下列結論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)5、如圖,直線a,b與直線c,d相交,若∠1=∠2,∠3=70°,則∠4的度數(shù)是;6、如圖,在△ABC中,∠A=52°,∠ABC與∠ACB的角平分線交于點D1,∠ABD1與∠ACD1的角平分線交于點D2,則∠BD2C的度數(shù)是_____.7、“兩條直線被第三條直線所截,內(nèi)錯角相等”是___命題.(填“真”或“假”)三、解答題(7小題,每小題10分,共計70分)1、如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.(1)求∠CBE的度數(shù);(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).2、已知:如圖,△ABC是任意一個三角形,求證:∠A+∠B+∠C=180°.3、完成下列推理過程:已知:如圖,∠1+∠2=180°,∠3=∠B求證:∠EDG+∠DGC=180°證明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()4、直線MN與直線PQ相交于O,∠POM=60°,點A在射線OP上運動,點B在射線OM上運動.(1)如圖1,∠BAO=70°,已知AE、BE分別是∠BAO和∠ABO角的平分線,試求出∠AEB的度數(shù).(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.(3)在(2)的條件下,在△CDE中,如果有一個角是另一個角的2倍,請直接寫出∠DCE的度數(shù).5、如圖,△ABC中,E是AB上一點,過D作DEBC交AB于E點,F(xiàn)是BC上一點,連接DF.若∠AED=∠1.(1)求證:ABDF.(2)若∠1=52°,DF平分∠CDE,求∠C的度數(shù).6、已知:如圖,點E在線段CD上,EA、EB分別平分∠DAB和∠ABC,∠AEB=90°,設AD=x,BC=y(tǒng),且(x﹣2)2+|y﹣5|=0.(1)求AD和BC的長.(2)試說線段AD與BC有怎樣的位置關系?并證明你的結論.(3)你能求出AB的長嗎?若能,請寫出推理過程,若不能,說明理由.7、如圖,已知BD⊥AC,EF⊥AC,垂足分別為D、F,∠1=∠2,請將證明∠ADG=∠C過程填寫完整.證明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥∴∠ADG=∠C-參考答案-一、單選題1、C【解析】【分析】根據(jù)內(nèi)錯角相等,兩直線平行的判定定理進行解答.【詳解】解:當∠1=∠3時,a∥b,∴∠3=∠1=55°,∵∠2+∠3=180°,∴∠2=125°,∴當∠2=125°時,a∥b,故選:C.【考點】本題考查了平行線的性質,熟記“內(nèi)錯角相等,兩直線平行”是解題的關鍵.2、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個內(nèi)角小于或等于60°”時,應先假設三角形中每一個內(nèi)角都不小于或等于60°,即每一個內(nèi)角都大于60°.故選:D.【考點】本題考查反證法,熟知反證法的證明步驟,正確得出原結論的反面是解答的關鍵.3、A【解析】【分析】根據(jù)平行線的性質和三角形外角的性質進行計算,即可得到答案.【詳解】解:,.,.故選.【考點】本題考查平行線的性質和三角形外角的性質,解題的關鍵是掌握平行線的性質和三角形外角的性質.4、D【解析】【分析】根據(jù)平行線的性質求出∠4,根據(jù)三角形內(nèi)角和定理計算即可.【詳解】∵a∥b,∴∠4=∠1=60°,∴∠3=180°-∠4-∠2=80°故選:D.【考點】本題考查的是平行線的性質、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關鍵.5、A【解析】【分析】根據(jù)平行線的判定定理:同位角相等兩直線平行,內(nèi)錯角相等兩直線平行,同旁內(nèi)角互補兩直線平行,逐項進行判斷,即可求解.【詳解】解:∵∠A=∠CBE,∴ADBC.故選:A.【考點】本題考查了平行線的判定,解題的關鍵是掌握平行線的判定方法.6、B【解析】【分析】根據(jù)點到直線的距離及兩點間的距離的定義可判斷①;根據(jù)平行線的性質及三角形的外角的性質可判斷②;根據(jù)平行線的判定可判斷③;根據(jù)平行線的判定與性質可判斷④.【詳解】解:①由于直線外一點到直線的垂線段的長度,叫做這點到這條直線的距離,故正確;②設AB與DE相交于點O.∵AB∥CD,∴∠AOE=∠D.又∵∠AOE>∠B,∴∠D>∠B,故錯誤;③∵∠ACD=∠CAB,∴AB∥CD,,故錯誤;④∵∠1=∠2,∴AD∥BC,∴∠D+∠BCD=180°,又∵∠D=120°,∴∠BCD=60°,故正確.故選:B.【考點】本題主要考查了點到直線的距離的定義,平行線的判定與性質,三角形的外角的性質,正確理解相關概念和性質是解本題的關鍵.7、C【解析】【分析】首先在△ADC中有內(nèi)角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內(nèi)角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點】本題主要考查三角形內(nèi)角和定理的應用,利用了三角形內(nèi)角和為180度,此題難度不大.8、D【解析】【分析】根據(jù)平行線的性質和判定和三角形內(nèi)角和定理逐個判斷即可.【詳解】解:∵∠2=30°,∠CAB=90°,∴∠1=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故①正確;∵∠CAB=∠DAE=90°,∴∠BAE+∠CAD=90°-∠1+90°+∠1=180°,故②正確;∵BC∥AD,∠B=45°,∴∠3=∠B=45°,∵∠2+∠3=∠DAE=90°,∴∠2=45°,故③錯誤;∵∠CAD=150°,∠BAE+∠CAD=180°,∴∠BAE=30°,∵∠E=60°,∴∠BOE=∠BAE+∠E=90°,∴∠4+∠B=90°,

∵∠B=45°,∴∠4=45°,∵∠C=45°,∴∠4=∠C,故④正確;所以其中正確的結論有①②④.故選:D.【考點】本題考查了三角形的內(nèi)角和定理和平行線的性質和判定,能靈活運用定理進行推理是解此題的關鍵.二、填空題1、96【解析】【分析】延長FO交AC于點G.根據(jù)三角形內(nèi)角和定理可求出.由翻折的性質可知,即得出,從而可求出.由三角形外角性質結合三角形內(nèi)角和定理即可得出,從而可求出.【詳解】解:如圖,延長FO交AC于點G.∵,∴.由翻折可知,∴,即,∴.∵,,∴,即,∴.故答案為:96.【考點】本題考查三角形內(nèi)角和定理,三角形外角性質,翻折的性質.正確的作出輔助線是解題關鍵.2、132°##132度【解析】【分析】先由矩形的性質得出∠BFE=∠DEF=16°,再根據(jù)折疊的性質得出∠CFG=180°﹣2∠BFE,由∠CFE=∠CFG﹣∠EFG即可得出答案.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=16°,∴∠CFE=∠CFG﹣∠EFG=180°﹣2∠BFE﹣∠EFG=180°﹣3×16°=132°,故答案為:132°.【考點】本題考查了翻折變換的性質、矩形的性質、平行線的性質;熟練掌握翻折變換和矩形的性質,弄清各個角之間的關系是解決問題的關鍵.3、

減小

15【解析】【分析】延長EF到H與CD交于H,先利用對頂角的性質和三角形內(nèi)角和定理求出DCE=60°,然后根據(jù)三角形外角的性質得到∠DHE=∠E+∠DCE=100°,∠DFE=∠D+∠DHF,由此求解即可.【詳解】解:如圖,延長EF到H與CD交于H,∵∠DCE=∠ACB=180°-∠A-∠B,∠A=70°,∠B=50°,∴∠DCE=60°,∴∠DHE=∠E+∠DCE=100°,∵∠DFE=∠D+∠DHF,∴∠D=∠DFE-∠DHF=120°-100°=20°,∴∠D從35°減小到20°,減小了15°,故答案為:減小,15.【考點】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質,對頂角的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.4、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質進行計算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點O是△ABC的三條角平分線的交點,BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點】本題主要考查的是三角形與角平分線的綜合運用,熟練掌握角平分線的性質是解題的關鍵.5、110°【解析】【詳解】試題解析:∵∠1=∠2,∴ab,∴∠3=∠5,故答案為點睛:同位角相等,兩直線平行.6、84°##84度【解析】【分析】利用角平分線的定義∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,求出∠CBD2=,,再根據(jù)三角形的內(nèi)角和定理以及,再把∠A代入即可求∠BD2C的度數(shù).【詳解】解:∵BD1、CD1分別平分∠ABC和∠ACB,∴∠D1BA=∠D1BC=∠ABC,∠D1CA=∠D1CB=∠ACB,∵BD2、CD2分別平分∠ABD1和∠ACD1,∴∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,∴∠CBD2=,∴,∴∠BD2C=180°-(∠D2BC+∠D2CB)=180°-(∠ABC+∠ABC),當∠A=52°時,∠BD2C=180°-×(180°-52°),=84°.故答案為84°.【考點】此題考查三角形內(nèi)角和定理,解題關鍵在于利用角平分線的定義進行有關計算.7、假【解析】【分析】由正確的題設得出正確的結論是真命題,由正確的題設不能得出正確結論是假命題,判定此命題的正誤即可得到答案.【詳解】解:∵當兩條平行線被第三條直線所截,內(nèi)錯角相等,∴兩條直線被第三條直線所截,內(nèi)錯角有相等或不相等兩種情況∴原命題錯誤,是假命題,故答案為假.【考點】本題考查了判斷命題的真假的知識,解題的關鍵是根據(jù)命題作出正確的判斷,必要時可以舉出反例.三、解答題1、(1)65°;(2)25°.【解析】【分析】(1)先根據(jù)直角三角形兩銳角互余求出∠ABC=90°﹣∠A=50°,由鄰補角定義得出∠CBD=130°.再根據(jù)角平分線定義即可求出∠CBE=∠CBD=65°;(2)先根據(jù)直角三角形兩銳角互余的性質得出∠CEB=90°﹣65°=25°,再根據(jù)平行線的性質即可求出∠F=∠CEB=25°.【詳解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分線,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【考點】本題考查了三角形內(nèi)角和定理,直角三角形兩銳角互余的性質,平行線的性質,鄰補角定義,角平分線定義.掌握各定義與性質是解題的關鍵.2、證明見解析【解析】【分析】過點A作EFBC,利用EFBC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代換可證∠BAC+∠B+∠C=180°.【詳解】解:如圖,過點A作EFBC,∵EFBC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【考點】本題考查了三角形的內(nèi)角和定理的證明,作輔助線把三角形的三個內(nèi)角轉化到一個平角上是解題的關鍵.3、鄰補角定義;∠DFE,同角的補角相等;內(nèi)錯角相等,兩直線平行;∠ADE,兩直線平行,內(nèi)錯角相等;等量代換;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補【解析】【分析】依據(jù)∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由內(nèi)錯角相等,兩直線平行證明EF∥AB,則∠3=∠ADE,再根據(jù)∠3=∠B,由同位角相等,兩直線平行證明DE∥BC,故可根據(jù)兩直線平行,同旁內(nèi)角互補,即可得出結論.【詳解】∵∠1+∠2=180°(已知)∠1+∠DFE=180°(鄰補角定義)∴∠2=∠DFE(同角的補角相等)∴EF∥AB(內(nèi)錯角相等,兩直線平行)∴∠3=∠ADE(兩直線平行,內(nèi)錯角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代換)∴DE∥BC(同位角相等,兩直線平行)∴∠EDG+∠DGC=180°(兩直線平行,同旁內(nèi)角互補)【考點】本題考查了平行線的性質和判定.正確識別“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關鍵.4、(1)∠AEB的度數(shù)為120°;(2)∠CED的大小不發(fā)生變化,其值為60°;(3)∠DCE的度數(shù)為40°或80°.【解析】【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根據(jù)AE、BE分別是∠BAO和∠ABO的角平分線,可得∠EAB和∠EBA的值,在△EAB中,根據(jù)三角形內(nèi)角和即可得出∠AEB的大?。唬?)不發(fā)生變化,延長BC、AD交于點F,根據(jù)角平分線的定義以及三角形內(nèi)角和可得∠F=90°-∠AOB,∠CED=90°-∠F,即可得出∠CED的度數(shù);(3)分三種情況求解即可.【詳解】解:(1)∵∠POM=60°,∠BAO=70°,∴∠ABO=50°.∵AE、BE分別是∠BAO和∠ABO的角平分線,∴∠EAB=∠OAB=35°,∠EBA=∠OBA=25°,∴∠AEB=180°-35°-25°=120°;(2)不發(fā)生變化,理由如下:如圖,延長BC、AD交于點F,∵點D、C分別是∠PAB和∠ABM的角平分線上的兩點,∴∠FAB=∠PAB=(180°-∠OAB),∠FBA=∠MBA=(180°-∠OBA),∴∠FAB+∠FBA=(180°-∠OAB)+(180°-∠OBA)=(180°+∠AOB)=90°+∠AOB,∵∠AOB=60°,∴∠F=180°-(∠FAB+∠FBA)=90°-∠AOB=60°,同理可求∠CED=90°-∠F=60°;(3)①當∠DCE=2∠E時,顯然不符合題意;②當∠DCE=2∠CDE時,∠DCE==80°;③當∠DCE=∠CDE時,∠DCE==40°,綜上可知,∠DCE的度

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論