




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省大理市中考數(shù)學(xué)檢測卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖是下列哪個立體圖形的主視圖()A. B.C. D.2、小穎有兩頂帽子,分別為紅色和黑色,有三條圍巾,分別為紅色、黑色和白色,她隨機拿出一頂帽子和一條圍巾戴上,恰好為紅色帽子和紅色圍巾的概率是(
)A. B. C. D.3、如圖,在中,,,若以點為圓心,的長為半徑的圓恰好經(jīng)過的中點,則的長等于()A. B. C. D.4、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.5、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.二、多選題(5小題,每小題3分,共計15分)1、如圖,AB為的直徑,,BC交于點D,AC交于點E,.下列結(jié)論正確的是(
)A. B.C. D.劣弧是劣弧的2倍2、下列條件中,不能確定一個圓的是(
)A.圓心與半徑 B.直徑C.平面上的三個已知點 D.三角形的三個頂點3、對于二次函數(shù),下列說法不正確的是(
)A.圖像開口向下B.圖像的對稱軸是直線C.函數(shù)最大值為0D.隨的增大而增大4、如圖,二次函敗y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象與x軸的交點的橫坐標(biāo)分別為﹣1、3,則下列結(jié)論中正確的有()A.a(chǎn)bc<0 B.2a+b=0 C.3a+2c>0 D.對于任意x均有ax2﹣a+bx﹣b≥05、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(
)A. B.C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.2、點(2,-3)關(guān)于原點的對稱點的坐標(biāo)為_____.3、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.4、如圖,,,是上的三個點,四邊形是平行四邊形,連接,,若,則_____.5、一個不透明的袋子裝有除顏色外其余均相同的2個紅球和m個黃球,隨機從袋中摸出個球記錄下顏色,再放回袋中搖勻大量重復(fù)試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,則m的值為_________.四、簡答題(2小題,每小題10分,共計20分)1、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點,與反比例函數(shù)y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點,若CD=CE,求點D坐標(biāo).2、如圖,已知拋物線的頂點坐標(biāo)為M,與x軸相交于A,B兩點(點B在點A的右側(cè)),與y軸相交于點C.(1)用配方法將拋物線的解析式化為頂點式:(),并指出頂點M的坐標(biāo);(2)在拋物線的對稱軸上找點R,使得CR+AR的值最小,并求出其最小值和點R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點P(點P在對稱軸的左側(cè)),求證:直線MP是⊙N的切線.五、解答題(4小題,每小題10分,共計40分)1、對于平面直角坐標(biāo)系xOy中的圖形M和點P給出如下定義:Q為圖形M上任意一點,若P,Q兩點間距離的最大值和最小值都存在,且最大值是最小值的2倍,則稱點P為圖形M的“二分點”.已知點N(3,0),A(1,0),,.(1)①在點A,B,C中,線段ON的“二分點”是______;②點D(a,0),若點C為線段OD的“二分點”,求a的取值范圍;(2)以點O為圓心,r為半徑畫圓,若線段AN上存在的“二分點”,直接寫出r的取值范圍.2、已知P為⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時,求⊙O的半徑。(2)如圖2,連接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。3、如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關(guān)于原點對稱的點B′的坐標(biāo):;(2)平移△ABC,使平移后點A的對應(yīng)點A1的坐標(biāo)為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2.4、隨著課后服務(wù)的全面展開,某校組織了豐富多彩的社團(tuán)活動.炯炯和露露分別打算從以下四個社團(tuán):A.快樂足球,B.?dāng)?shù)學(xué)歷史,C.文學(xué)欣賞,D.棋藝鑒賞中,選擇一個社團(tuán)參加.(1)炯炯選擇數(shù)學(xué)歷史的概率為______.(2)用畫樹狀圖或列表的方法求炯炯和露露選擇同一個社團(tuán)的概率.-參考答案-一、單選題1、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.2、C【解析】【分析】利用列表法或樹狀圖即可解決.【詳解】分別用r、b代表紅色帽子、黑色帽子,用R、B、W分別代表紅色圍巾、黑色圍巾、白色圍巾,列表如下:RBWrrRrBrWbbRbBbW則所有可能的結(jié)果數(shù)為6種,其中恰好為紅色帽子和紅色圍巾的結(jié)果數(shù)為1種,根據(jù)概率公式,恰好為紅色帽子和紅色圍巾的概率是.故選:C.【考點】本題考查了簡單事件的概率,常用列表法或畫樹狀圖來求解.3、D【分析】連接CD,由直角三角形斜邊中線定理可得CD=BD,然后可得△CDB是等邊三角形,則有BD=BC=5cm,進(jìn)而根據(jù)勾股定理可求解.【詳解】解:連接CD,如圖所示:∵點D是AB的中點,,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故選D.【點睛】本題主要考查圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理,熟練掌握圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理是解題的關(guān)鍵.4、B【分析】根據(jù)“把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形”及“如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點睛】本題主要考查中心對稱圖形及軸對稱圖形的識別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關(guān)鍵.5、D【分析】連接,根據(jù)求得半徑,進(jìn)而根據(jù)的長,勾股定理的逆定理證明,根據(jù)弧長關(guān)系可得,即可證明是等邊三角形,求得,進(jìn)而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點睛】本題考查了弧與圓心角的關(guān)系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)圓周角定理,等邊對等角,等腰三角形的性質(zhì),直徑所對圓周角是直角等知識即可解答【詳解】如圖,連接,,∵是的直徑,∴,又∵中,,∴點D是的中點,即,故選項正確;由選項可知是的平分線,∴,由圓周角定理知,,故選項正確;∵是的直徑,∴,∵,∴,∴,∵,∴,∴,即,∴,故選項錯誤;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故選項正確.綜上所述,正確的結(jié)論是:.故選:【考點】本題考查了圓周角定理,等邊對等角,等腰直角三角形的判定和性質(zhì),直徑所對圓周角是直角等知識,解題關(guān)鍵是求出相應(yīng)角的度數(shù)2、C【解析】【分析】根據(jù)不在同一條直線上的三個點確定一個圓,已知圓心和直徑所作的圓是唯一的進(jìn)行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個圓,不符合題意;B、已知直徑能確定一個圓,不符合題意;C、平面上的三個已知點,不能確定一個圓,符合題意;D、已知三角形的三個頂點,能確定一個圓,不符合題意;故選C.【考點】本題考查了確定圓的條件,解題的關(guān)鍵是分類討論.3、ACD【解析】【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),a=2>0,∴該函數(shù)的圖象開口向上,故選項A錯誤,圖象的對稱軸是直線x=1,故選項B正確,函數(shù)的最小值是y=0,故選項C錯誤,當(dāng)x>1時隨的增大而增大,故選項D錯誤,故選:A,C,D.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.4、BD【解析】【分析】由拋物線開口方向得到a>0,利用拋物線與x軸的交點問題和拋物線的對稱性得到拋物線的對稱軸為直線x=1,即-=1,所以b=-2a<0,利用拋物線與y軸的交點位置得到c<0,則可對A進(jìn)行判斷;利用b=-2a可對B進(jìn)行判斷;由于x=-1時,y=0,所以a-b+c=0,則c=-3a,3a+2c=-3a<0,于是可對C進(jìn)行判斷;根據(jù)二次函數(shù)性質(zhì),x=1時,y的值最小,所以a+b+c≤ax2+bx+c,于是可對D進(jìn)行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線與x軸的交點的坐標(biāo)分別為(-1,0),(3,0),∴拋物線的對稱軸為直線x=1,即-=1,∴b=-2a<0,∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc>0,所以A錯誤;∵b=-2a,∴2a+b=0,所以B正確;∵x=-1時,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C錯誤;∵x=1時,y的值最小,∴對于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正確.故選:BD.【考點】本題考查了二次函數(shù)與不等式(組):函數(shù)值y與某個數(shù)值m之間的不等關(guān)系,一般要轉(zhuǎn)化成關(guān)于x的不等式,解不等式求得自變量x的取值范圍;利用兩個函數(shù)圖象在直角坐標(biāo)系中的上下位置關(guān)系求自變量的取值范圍,可作圖利用交點直觀求解,也可把兩個函數(shù)解析式列成不等式求解.5、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應(yīng)相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.三、填空題1、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.2、(-2,3)【分析】根據(jù)“關(guān)于原點對稱的點的坐標(biāo)關(guān)系,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”,即可求解.【詳解】點(2,-3)關(guān)于原點的對稱點的坐標(biāo)是(-2,3).故答案為:
(-2,3).【點睛】本題主要考查點關(guān)于原點對稱,解決本題的關(guān)鍵是要熟練掌握關(guān)于原點對稱點的坐標(biāo)的關(guān)系.3、【分析】連接OC交AB于點D,再連接OA.根據(jù)軸對稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進(jìn)而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點睛】本題考查軸對稱的性質(zhì),垂徑定理,勾股定理,綜合應(yīng)用這些知識點是解題關(guān)鍵.4、64【解析】【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【考點】本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握圓周角定理是解答本題的關(guān)鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.5、8【分析】首先根據(jù)題意可取確定摸出紅球的概率為0.2,然后根據(jù)概率公式建立方程求解即可.【詳解】解:∵大量重復(fù)試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,∴摸出紅球的概率為0.2,由題意,,解得:,經(jīng)檢驗,是原方程的解,且符合題意,故答案為:8.【點睛】本題考查由頻率估計概率,以及已知概率求數(shù)量;大量重復(fù)試驗后,某種情況出現(xiàn)的頻率穩(wěn)定在某個值附近時,這個值即為該事件發(fā)生的概率,掌握概率公式是解題關(guān)鍵.四、簡答題1、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點坐標(biāo).【詳解】解:(1)作CM⊥y軸于M,如圖,當(dāng)x=0時,y=x+2=2,則A(0,2),當(dāng)y=0時,x+2=0,解得x=﹣2,則B(﹣2,0),∵M(jìn)C∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數(shù)解析式為y=;(2)MC交直線DE于N,如圖,∵M(jìn)C=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點】本題是反比例函數(shù)與一次函數(shù)的綜合題,涉及到待定系數(shù)法求函數(shù)解析式、平行線分線段成比例定理、等腰三角形的性質(zhì),有一定的難度2、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點坐標(biāo);(2)連接BC,則BC與對稱軸的交點為R,此時CR+AR的值最??;先求出點A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點R的坐標(biāo);(3)設(shè)點P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點P坐標(biāo),再計算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點式為:,頂點M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時,,解得x=1或6,∴A(1,0),B(6,0),∵x=0時,y=﹣3,∴C(0,﹣3).連接BC,則BC與對稱軸x=的交點為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點之間線段最短可知此時CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點坐標(biāo)為(,);(3)設(shè)點P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項得,,得:,整理得:,解得(與A重合,舍去),,(在對稱軸的右側(cè),舍去),(與B重合,舍去),∴點P坐標(biāo)為(2,2).∵M(jìn)(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點P在⊙N上,∴直線MP是⊙N的切線.考點:1.二次函數(shù)綜合題;2.最值問題;3.切線的判定;4.壓軸題.五、解答題1、(1)①B和C;②或;(2)或【分析】(1)①分別找出點A,B,C到線段ON的最小值和最大值,是否滿足“二分點”定義即可;②對a的取值分情況討論:、、和,根據(jù)“二分點”的定義可求解;(2)設(shè)線段AN上存在的“二分點”為,對的取值分情況討論、,、,和,根據(jù)“二分點”的定義可求解.【詳解】(1)①∵點A在ON上,故最小值為0,不符合題意,點B到ON的最小值為,最大值為,∴點B是線段ON的“二分點”,點C到ON的最小值為1,最大值為,∴點C是線段ON的“二分點”,故答案為:B和C;②若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:;若,如圖所示:點C到OD的最小值為1,最大值為,滿足題意;若時,如圖所示:點C到OD的最小值為1,最大值為,∵點C為線段OD的“二分點”,∴,解得:(舍);若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:或(舍),綜上所得:a的取值范圍為或;(2)如圖所示,設(shè)線段AN上存在的“二分點”為,當(dāng)時,最小值為:,最大值為:,∴,即,∵,∴∴;當(dāng),時,最小值為:,最大值為:,∴∴,即,∵,∴,∵,∴不存在;當(dāng),時,最小值為:,最大值為:,∴,即,∴,∵,∴不存在;當(dāng)時,最小值為:,最大值為:,∴,即,∴,∵,∴,綜上所述,r的取值范圍為或.【點睛】本題考查坐標(biāo)上的兩點距離,解一元二次方程解不等式以及點到圓的距離求最值,根據(jù)題目所給條件,掌握“二分點”的定義是解題的關(guān)鍵.2、(1);(2)α+2β=90°,見解析【解析】【分析】(1)連接AB,由已知得到∠APB=∠APQ+BPQ=90°,根據(jù)圓周角定理證得AB是⊙O的直徑,然后根據(jù)勾股定理求得直徑,即可求得半徑;(2)連接OA、OB、OQ,由證得∠APQ=∠BPQ,即可證得OQ⊥ON,然后根據(jù)三角形內(nèi)角和定理證得2∠OPN+∠PON+∠NOQ=180°,,即可證得α+2β=90°.【詳解】(1)連接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直徑
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東省紫金縣2026屆化學(xué)高一第一學(xué)期期末調(diào)研模擬試題含解析
- 情景轉(zhuǎn)述課件
- 2026屆山東省莒縣第二中學(xué)實驗班化學(xué)高一上期中質(zhì)量檢測試題含解析
- 威海市重點中學(xué)2026屆高二化學(xué)第一學(xué)期期中復(fù)習(xí)檢測模擬試題含解析
- 園林綠化個人年度工作方案
- 醫(yī)院醫(yī)生年度工作方案
- 成功的茶葉營銷策劃方案
- 社區(qū)三八婦女節(jié)活動方案
- 識字試卷測試題及答案
- 鼻腸管留置操作流程
- 工作總結(jié)及工作思路(輸電運維班)
- 氣管及支氣管內(nèi)插管
- Unit 14 I remember meeting all of you in Grade 7(大單元教材分析)教學(xué)課件 人教新目標(biāo)九年級英語全冊
- 2025年高處吊籃安裝拆卸工(建筑特殊工種)證考試題庫
- 2025年新云南會計靈活用工協(xié)議書
- 2024年揚州市輔警真題
- 2025內(nèi)蒙古森工集團(tuán)招聘工勤技能人員3100人筆試參考題庫附帶答案詳解析集合
- 登銷記以及運統(tǒng)46系統(tǒng)運用21課件
- 河蟹的營養(yǎng)需要與飼料優(yōu)化技術(shù)
- GHTF—質(zhì)量管理體系--過程驗證指南中文版
- 數(shù)學(xué)用表A4(銳角三角函數(shù))
評論
0/150
提交評論