安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克練習(xí)題(含答案解析)_第1頁
安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克練習(xí)題(含答案解析)_第2頁
安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克練習(xí)題(含答案解析)_第3頁
安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克練習(xí)題(含答案解析)_第4頁
安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克練習(xí)題(含答案解析)_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽合肥市廬江縣二中7年級數(shù)學(xué)下冊第四章三角形定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列四個圖形中,BE不是△ABC的高線的圖是()A. B.C. D.2、下列長度的三條線段能組成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,73、如圖,在正方形ABCD中,E,F(xiàn)分別為AD,CD上的點,且AE=CF,則下列說法正確的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠24、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個,可使△ABC≌△BAD.可選的條件個數(shù)為()A.1 B.2 C.3. D.45、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,136、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56117、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm8、下列長度的三條線段能組成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,79、如圖,在和中,已知,在不添加任何輔助線的前提下,要使,只需再添加的一個條件不可以是()A. B. C. D.10、如圖,AB=AC,點D、E分別在AB、AC上,補(bǔ)充一個條件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按圖中所示位置擺放,點D在邊AB上,EFBC,則∠ADF的度數(shù)為_____度.2、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個條件是____.3、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.4、如圖,線段AC與BD相交于點O,∠A=∠D=90°,要證明△ABC≌△DCB,還需添加的一個條件是____________.(只需填一個條件即可)5、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.6、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動木架,觀察圖②中的變動情況,說一說,其中所蘊含的數(shù)學(xué)原理是_____.7、已知:如圖,AB=DB.只需添加一個條件即可證明.這個條件可以是______.(寫出一個即可).8、如圖,直線ED把分成一個和四邊形BDEC,的周長一定大于四邊形BDEC的周長,依據(jù)的原理是____________________________________.9、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當(dāng)△PEC與△QFC全等時,CQ的長為______.10、如圖,在中,D、E分別為AC、BC邊上一點,AE與BD交于點F.已知,,且的面積為60平方厘米,則的面積為______平方厘米;如果把“”改為“”其余條件不變,則的面積為______平方厘米(用含n的代數(shù)式表示).三、解答題(6小題,每小題10分,共計60分)1、探究與發(fā)現(xiàn):如圖①,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連接DE.(1)當(dāng)∠BAD=60°時,求∠CDE的度數(shù);(2)當(dāng)點D在BC(點B、C除外)邊上運動時,試猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.(3)深入探究:如圖②,若∠B=∠C,但∠C≠45°,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關(guān)系.2、如圖,CE⊥AB于點E,BF⊥AC于點F,BD=CD.(1)求證:△BDE≌△CDF;(2)求證:AE=AF.3、已知,∠A=∠D,BC平分∠ABD,求證:AC=DC.4、如圖,點E、B在線段AB上,AE=DB,BC=EF,BC∥EF,求證:AC=DF.5、已知三角形的兩邊長分別是4cm和9cm,如果第三邊長是奇數(shù),求第三邊的長6、如圖所示,已知,請你添加一個條件,證明:.(1)你添加的條件是______;(2)請寫出證明過程.-參考答案-一、單選題1、C【分析】利用三角形的高的定義可得答案.【詳解】解:BE不是△ABC的高線的圖是C,故選:C.【點睛】此題主要考查了三角形的高,關(guān)鍵是掌握從三角形的一個頂點向底邊作垂線,垂足與頂點之間的線段叫做三角形的高.2、C【分析】根據(jù)三角形的三邊關(guān)系,逐項判斷即可求解.【詳解】解:A、因為,所以不能組成三角形,故本選項不符合題意;B、因為,所以不能組成三角形,故本選項不符合題意;C、因為,所以能組成三角形,故本選項符合題意;D、因為,所以不能組成三角形,故本選項不符合題意;故選:C【點睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關(guān)鍵.3、C【分析】由“SAS”可證△ABE≌△CBF,可得∠AEB=∠2,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故選:C.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),證明三角形全等是解題的關(guān)鍵.4、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個數(shù)有4個故選:D【點睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.5、D【分析】根據(jù)三角形三邊關(guān)系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點睛】本題考查了構(gòu)成三角形的條件,熟練掌握三角形三邊關(guān)系是解題的關(guān)鍵.6、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對各選項分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項不符合題意;C.∵5+6>10,∴能組成三角形,故本選項符合題意;D.∵5+6=11,∴不能組成三角形,故本選項不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.7、C【分析】設(shè)三角形第三邊的長為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類求三角形第三邊的范圍的題,實際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.8、C【分析】根據(jù)組成三角形的三邊關(guān)系依次判斷即可.【詳解】A、3,4,7中3+4=7,故不能組成三角形,與題意不符,選項錯誤.B、3,4,8中3+4<8,故不能組成三角形,與題意不符,選項錯誤.C、3,4,5中任意兩邊之和都大于第三邊,任意兩邊之差都小于第三邊,故能組成三角形,符合題意,選項正確.D、3,3,7中3+3<7,故不能組成三角形,與題意不符,選項錯誤.故選:C.【點睛】本題考查了三角形的三邊關(guān)系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.9、B【分析】添加AC=AD,利用SAS即可得到兩三角形全等;添加∠D=∠C,利用AAS即可得到兩三角形全等,添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等.【詳解】解:A、添加AC=AD,利用SAS即可得到兩三角形全等,故此選項不符合題意;B、添加BC=BD,不能判定兩三角形全等,故此選項符合題意;C、添加∠D=∠C,利用AAS即可得到兩三角形全等,故此選項不符合題意;D、添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等,故此選項不符合題意;故選:B.【點睛】此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關(guān)鍵.10、C【分析】根據(jù)全等三角形的判定定理進(jìn)行判斷即可.【詳解】解:根據(jù)題意可知:AB=AC,,若,則根據(jù)可以證明△ABE≌△ACD,故A不符合題意;若AD=AE,則根據(jù)可以證明△ABE≌△ACD,故B不符合題意;若BE=CD,則根據(jù)不可以證明△ABE≌△ACD,故C符合題意;若∠AEB=∠ADC,則根據(jù)可以證明△ABE≌△ACD,故D不符合題意;故選:C.【點睛】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解本題的關(guān)鍵.二、填空題1、75【分析】設(shè)CB與ED交點為G,依據(jù)平行線的性質(zhì),即可得到∠CGD的度數(shù),再根據(jù)三角形外角的性質(zhì),得到∠BDE的度數(shù),即可得∠ADF的度數(shù).【詳解】如圖所示,設(shè)CB與ED交點為G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案為:75.【點睛】本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì),解題時注意:兩條平行線被第三條直線所截,同位角相等.2、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點睛】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定定理.3、【分析】根據(jù)題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.4、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根據(jù)全等三角形的判定條件求解即可.【詳解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL證明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS證明△ABC≌△DCB,故答案為:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【點睛】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.5、5【分析】利用三角形的中線把三角形分成面積相等的兩個三角形進(jìn)行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個三角形的性質(zhì)求解是解題的關(guān)鍵.6、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒有變形,其中所蘊含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.7、AC=DC【分析】由題意可得,BC為公共邊,AB=DB,即添加一組邊對應(yīng)相等,可證△ABC與△DBC全等.【詳解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC與△DBC中,,∴△ABC≌△DBC(SSS),故答案為:AC=DC.【點睛】本題考查了全等三角形的判定,靈活運用全等三角形的判定是本題的關(guān)鍵.8、三角形兩邊之和大于第三邊【分析】表示出和四邊形BDEC的周長,再結(jié)合中的三邊關(guān)系比較即可.【詳解】解:的周長=四邊形BDEC的周長=∵在中∴即的周長一定大于四邊形BDEC的周長,∴依據(jù)是:三角形兩邊之和大于第三邊;故答案為三角形兩邊之和大于第三邊【點睛】本題考查了三角形三邊關(guān)系定理,關(guān)鍵是熟悉三角形兩邊之和大于第三邊的知識點.9、7或3.5【分析】分兩種情況:(1)當(dāng)P在AC上,Q在BC上時;(2)當(dāng)P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當(dāng)P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當(dāng)P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當(dāng)△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.10、6【分析】連接CF,依據(jù)AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,依據(jù)S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當(dāng)BE=nCE時,運用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當(dāng)BE=nCE時,S△AEC=,設(shè)S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點睛】本題主要考查了三角形的面積的計算,解決問題的關(guān)鍵是作輔助線,根據(jù)三角形之間的面積關(guān)系得出結(jié)論.解題時注意:三角形的中線將三角形分成面積相等的兩部分.三、解答題1、(1)30°;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE.【分析】(1)根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計算即可;(2)設(shè)∠BAD=x,根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計算即可;(3)設(shè)∠BAD=x,仿照(2)的解法計算.【詳解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:設(shè)∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=,∴∠CDE=45°+x﹣=x,∴∠BAD=2∠CDE;(3)設(shè)∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+x,∴∠CDE=∠B+x﹣(∠C+x)=x,∴∠BAD=2∠CDE.【點睛】本題考查了三角形內(nèi)角和和外角的性質(zhì),解題關(guān)鍵是熟練掌握三角形內(nèi)角和和外角性質(zhì),通過設(shè)參數(shù)計算,發(fā)現(xiàn)角之間的關(guān)系2、(1)見解析;(2)見解析【分析】(1)根據(jù)CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出結(jié)論;(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出結(jié)論.【詳解】證明:(1)∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論