南京市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(及答案)_第1頁(yè)
南京市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(及答案)_第2頁(yè)
南京市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(及答案)_第3頁(yè)
南京市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(及答案)_第4頁(yè)
南京市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(及答案)_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

南京市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題(及答案)(1)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.下列條件中,不能判定為直角三角形的是()A. B.C. D.,,2.在平面直角坐標(biāo)系內(nèi)的機(jī)器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行動(dòng)結(jié)果為:在原地順時(shí)針旋轉(zhuǎn)A后,再向正前方沿直線行走α.若機(jī)器人的位置在原點(diǎn),正前方為y軸的負(fù)半軸,則它完成一次指令[4,30°]后位置的坐標(biāo)為()A.(-2,2) B.(-2,-2) C.(-2,-2) D.(-2,2)3.在ΔABC中,,則∠A()A.一定是銳角 B.一定是直角 C.一定是鈍角 D.非上述答案4.我國(guó)古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個(gè)這樣的圖形拼成,若a=3,b=4,則該矩形的面積為(

)A.20 B.24 C. D.5.圓柱形杯子的高為18cm,底面周長(zhǎng)為24cm,已知螞蟻在外壁A處(距杯子上沿2cm)發(fā)現(xiàn)一滴蜂蜜在杯子內(nèi)(距杯子下沿4cm),則螞蟻從A處爬到B處的最短距離為()A. B.28 C.20 D.6.如圖,P為等邊三角形ABC內(nèi)的一點(diǎn),且P到三個(gè)頂點(diǎn)A,B,C的距離分別為3,4,5,則△ABC的面積為()A. B. C. D.7.如圖,在四邊形ABCD中,∠DAB=30°,點(diǎn)E為AB的中點(diǎn),DE⊥AB,交AB于點(diǎn)E,DE=,BC=1,CD=,則CE的長(zhǎng)是()A. B. C. D.8.如圖,在△ABC中,∠C=90°,AD是△ABC的一條角平分線.若AC=6,AB=10,則點(diǎn)D到AB邊的距離為()A.2 B.2.5 C.3 D.49.如圖,在中,,,,與的平分線交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),若則的長(zhǎng)為()A. B.2 C. D.410.如圖,等邊的邊長(zhǎng)為,,分別是,上的兩點(diǎn),將沿直線折疊,點(diǎn)落在點(diǎn)處,且點(diǎn)在外部,則陰影部分圖形的周長(zhǎng)為()A. B. C. D.11.如圖,已知中,的垂直平分線分別交于連接,則的長(zhǎng)為()A. B. C. D.12.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,BD平分∠ABC,E是AB中點(diǎn),連接DE,則DE的長(zhǎng)為()A.

B.2 C. D.13.如圖,是等邊三角形,點(diǎn)D.E分別為邊BC.AC上的點(diǎn),且,點(diǎn)F是BE和AD的交點(diǎn),,垂足為點(diǎn)G,已知,,則為()A.4 B.5 C.6 D.714.如圖,有一張直角三角形紙片,兩直角邊AC=6cm,BC=8cm,D為BC邊上的一點(diǎn),現(xiàn)將直角邊AC沿直線AD折疊,使AC落在斜邊AB上,且與AE重合,則CD的長(zhǎng)為()A.2cm B.2.5cm C.3cm D.4cm15.如圖,在中,平分,平分的外角,且交于,若,則的值為()A.8 B.16 C.32 D.6416.下列命題中,是假命題的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),則△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,則△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,則△ABC是直角三角形17.如圖,已知數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,過(guò)點(diǎn)作直線垂直于,在上取點(diǎn),使,以點(diǎn)為圓心,以為半徑作弧,弧與數(shù)軸的交點(diǎn)所表示的數(shù)為()A. B. C. D.18.已知一個(gè)三角形的兩邊長(zhǎng)分別是5和13,要使這個(gè)三角形是直角三角形,則這個(gè)三角形的第三條邊可以是()A.6 B.8 C.10 D.1219.如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,現(xiàn)將Rt△ABC沿BD進(jìn)行翻折,使點(diǎn)A剛好落在BC上,則CD的長(zhǎng)為(

)A.10 B.5 C.4 D.320.如圖,長(zhǎng)方體的長(zhǎng)為15cm,寬為10cm,高為20cm,點(diǎn)B離點(diǎn)C5cm,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B去吃一滴蜜糖,需要爬行的最短距離是()cm.A.25 B.20 C.24 D.1021.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動(dòng)點(diǎn),則PC+PQ的最小值是()A. B.5 C.6 D.822.有下列的判斷:①△ABC中,如果a2+b2≠c2,那么△ABC不是直角三角形②△ABC中,如果a2-b2=c2,那么△ABC是直角三角形③如果△ABC是直角三角形,那么a2+b2=c2以下說(shuō)法正確的是()A.①② B.②③ C.①③ D.②23.《九章算術(shù)》是我國(guó)古代第一部數(shù)學(xué)專著,它的出現(xiàn)標(biāo)志中國(guó)古代數(shù)學(xué)形成了完整的體系.“折竹抵地”問(wèn)題源自《九章算術(shù)》中:“今有竹高一丈,末折抵地,去本四尺,問(wèn)折者高幾何?”意思是:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn)(如圖),則折斷后的竹子高度為多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.424.將一根24cm的筷子,置于底面直徑為15cm,高8cm的裝滿水的無(wú)蓋圓柱形水杯中,設(shè)筷子浸沒在杯子里面的長(zhǎng)度為hcm,則h的取值范圍是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm25.長(zhǎng)度分別為9cm、12cm、15cm、36cm、39cm五根木棍首尾連接,最多可搭成直角三角形的個(gè)數(shù)為A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)26.棱長(zhǎng)分別為的兩個(gè)正方體如圖放置,點(diǎn)A,B,E在同一直線上,頂點(diǎn)G在棱BC上,點(diǎn)P是棱的中點(diǎn).一只螞蟻要沿著正方體的表面從點(diǎn)A爬到點(diǎn)P,它爬行的最短距離是()A. B. C. D.27.如圖,中,有一點(diǎn)在上移動(dòng).若,則的最小值為()A.8 B.8.8 C.9.8 D.1028.由下列條件不能判定△ABC為直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a(chǎn)=2,b=3,c=4 D.(b+c)(b-c)=a229.已知直角三角形紙片ABC的兩直角邊長(zhǎng)分別為6,8,現(xiàn)將按如圖所示的方式折疊,使點(diǎn)A與點(diǎn)B重合,則BE的長(zhǎng)是()A. B. C. D.30.如圖,是我國(guó)古代著名的“趙爽弦圖”的示意圖,此圖是由四個(gè)全等的直角三角形拼接而成,其中AE=10,BE=24,則EF的長(zhǎng)是()A.14 B.13 C.14 D.14【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.D解析:D【分析】由勾股定理的逆定理,只要驗(yàn)證兩小邊的平方和等于最長(zhǎng)邊的平方或最大角是否是即可.【詳解】解:、,是直角三角形,故能判定是直角三角形;、,,故能判定是直角三角形;、,,故能判定是直角三角形;、,不是直角三角形,故不能判定是直角三角形;故選:.【點(diǎn)睛】本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,可利用勾股定理的逆定理和直角三角形的定義判斷.2.B解析:B【解析】根據(jù)題意,如圖,∠AOB=30°,OA=4,則AB=2,OB=2,所以A(-2,-2),故選B.3.A解析:A【解析】【分析】根據(jù)以及三角形三邊關(guān)系可得2bc>a2,再根據(jù)(b-c)2≥0,可推導(dǎo)得出b2+c2>a2,據(jù)此進(jìn)行判斷即可得.【詳解】∵,∴,∴2bc=a(b+c),∵a、b、c是三角形的三條邊,∴b+c>a,∴2bc>a·a,即2bc>a2,∵(b-c)2≥0,∴b2+c2-2bc≥0,b2+c2≥2bc,∴b2+c2>a2,∴一定為銳角,故選A.【點(diǎn)睛】本題考查了三角形三邊關(guān)系、完全平方公式、不等式的傳遞性、勾股定理等,題目較難,得出b2+c2>a2是解題的關(guān)鍵.4.B解析:B【分析】設(shè)小正方形的邊長(zhǎng)為x,則矩形的一邊長(zhǎng)為(a+x),另一邊為(b+x),根據(jù)矩形的面積的即等于兩個(gè)三角形的面積之和,也等于長(zhǎng)乘以寬,列出方程,化簡(jiǎn)再代入a,b的值,得出x2+7x=12,再根據(jù)矩形的面積公式,整體代入即可.【詳解】設(shè)小正方形的邊長(zhǎng)為x,則矩形的一邊長(zhǎng)為(a+x),另一邊為(b+x),根據(jù)題意得:2(ax+x2+bx)=(a+x)(b+x),化簡(jiǎn)得:ax+x2+bx-ab=0,又∵a=3,b=4,∴x2+7x=12;∴該矩形的面積為=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案為B.【點(diǎn)睛】本題考查了勾股定理的證明以及運(yùn)用和一元二次方程的運(yùn)用,求出小正方形的邊長(zhǎng)是解題的關(guān)鍵.5.C解析:C【解析】分析:將杯子側(cè)面展開,建立A關(guān)于EF的對(duì)稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長(zhǎng)度即為所求.詳解:如圖所示,將杯子側(cè)面展開,作A關(guān)于EF的對(duì)稱點(diǎn)A′,連接A′B,則A′B即為最短距離,A′B=(cm)故選C.點(diǎn)睛:本題考查了勾股定理、最短路徑等知識(shí).將圓柱側(cè)面展開,化曲面為平面并作出A關(guān)于EF的對(duì)稱點(diǎn)A′是解題的關(guān)鍵.6.A解析:A【解析】分析:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長(zhǎng)BP,作AF⊥BP于點(diǎn)F.AP=3,PE=4,根據(jù)勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),在直角△APF中利用三角函數(shù)求得AF和PF的長(zhǎng),則在直角△ABF中利用勾股定理求得AB的長(zhǎng),進(jìn)而求得三角形ABC的面積.詳解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,連EP,且延長(zhǎng)BP,作AF⊥BP于點(diǎn)F.如圖,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE為等邊三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE為直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.則△ABC的面積是?AB2=?(25+12)=9+.故選A.點(diǎn)睛:本題考查了等邊三角形的判定與性質(zhì)、勾股定理的逆定理以及旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.7.D解析:D【解析】【分析】連接BD,作CF⊥AB于F,由線段垂直平分線的性質(zhì)得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性質(zhì)得出BD=AD=2DE=,AE=BE=DE=3,證出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出結(jié)果.【詳解】解:連接BD,作CF⊥AB于F,如圖所示:則∠BFC=90°,∵點(diǎn)E為AB的中點(diǎn),DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=BC=,CF=BF=,∴EF=BE+BF=,在Rt△CEF中,由勾股定理得:CE=;故選D.【點(diǎn)睛】本題考查了勾股定理、勾股定理的逆定理、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì);熟練掌握勾股定理和逆定理是解題的關(guān)鍵.8.C解析:C【分析】作DE⊥AB于E,由勾股定理計(jì)算出可求BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用等等面積法列方程、解方程即可解答.【詳解】解:作DE⊥AB于E,如圖,在Rt△ABC中,BC==8,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=6(8﹣x),解得x=3,即點(diǎn)D到AB邊的距離為3.故答案為C.【點(diǎn)睛】本題考查了角平分線的性質(zhì)和勾股定理的相關(guān)知識(shí),理解角的平分線上的點(diǎn)到角的兩邊的距離相等是解答本題的關(guān)鍵..9.B解析:B【分析】過(guò)點(diǎn)O作OE⊥BC于E,OF⊥AC于F,由角平分線的性質(zhì)得到OD=OE=OF,根據(jù)勾股定理求出BC的長(zhǎng),易得四邊形ADFO為正方形,根據(jù)線段間的轉(zhuǎn)化即可得出結(jié)果.【詳解】解:過(guò)點(diǎn)O作OE⊥BC于E,OF⊥AC于F,∵BO,CO分別為∠ABC,∠ACB的平分線,所以O(shè)D=OE=OF,又BO=BO,∴△BDO≌△BEO,∴BE=BD.同理可得,CE=CF.又四邊形ADOE為矩形,∴四邊形ADOE為正方形.∴AD=AF.∵在Rt△ABC中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故選:B.【點(diǎn)睛】此題考查了角平分線的定義與性質(zhì),以及全等三角形的判定與性質(zhì),屬于中考常考題型.10.D解析:D【分析】根據(jù)折疊的性質(zhì)可得AD=A'D,AE=A'E,易得陰影部分圖形的周長(zhǎng)為=AB+BC+AC,則可求得答案.【詳解】解:因?yàn)榈冗吶切蜛BC的邊長(zhǎng)為1cm,所以AB=BC=AC=1cm,因?yàn)椤鰽DE沿直線DE折疊,點(diǎn)A落在點(diǎn)A'處,所以AD=A'D,AE=A'E,所以陰影部分圖形的周長(zhǎng)=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故選:D.【點(diǎn)睛】此題考查了折疊的性質(zhì)與等邊三角形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用以及折疊前后圖形的對(duì)應(yīng)關(guān)系.11.C解析:C【分析】先根據(jù)勾股定理的逆定理證明△ABC是直角三角形,根據(jù)垂直平分線的性質(zhì)證得AD=BD,由此根據(jù)勾股定理求出CD.【詳解】∵AB=10,AC=8,BC=6,∴,∴△ABC是直角三角形,且∠C=90°,∵DE垂直平分AB,∴AD=BD,在Rt△BCD中,,∴,解得CD=,故選:C.【點(diǎn)睛】此題考查勾股定理及其逆定理,線段垂直平分線的性質(zhì),題中證得△ABC是直角三角形,且∠C=90°是解題的關(guān)鍵,再利用勾股定理求解.12.A解析:A【解析】試題解析:如圖,過(guò)D作AB垂線交于K,∵BD平分∠ABC,∴∠CBD=∠ABD∵∠C=∠DKB=90°,∴CD=KD,在△BCD和△BKD中,∴△BCD≌△BKD,∴BC=BK=3∵E為AB中點(diǎn)∴BE=AE=2.5,EK=0.5,∴AK=AE-EK=2,設(shè)DK=DC=x,AD=4-x,∴AD2=AK2+DK2即(4-x)2=22+x2解得:x=∴在Rt△DEK中,DE=.故選A.13.C解析:C【分析】結(jié)合等邊三角形得性質(zhì)易證△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE=15°,進(jìn)而兩次利用勾股定理可求解.【詳解】∵△ABC為等邊三角形∴∠BAE=∠C=60°,AB=AC,CD=AE∴△ABE≌△CAD(SAS)∴∠ABE=∠CAD∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,∵BG⊥AD,∴∠BGF=90°,∴∠FBG=30°,∵FG=1,∴BF=2FG=2,∵∠BEC=75°,∠BAE=60°,∴∠ABE=∠BEC﹣∠BAE=15°,∴∠ABG=45°,∵BG⊥AD,∴∠AGB=90°,∴AG=BG==,AB2=AG2+BG2=()2+()2=6.故選C.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),勾股定理,證明△ABG為等腰直角三角形是解題關(guān)鍵.14.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性質(zhì)求得BE=4,設(shè)DC=,則BD=,在△BDE中,利用勾股定理列方程求解即可.【詳解】在Rt△ABC中,由勾股定理可知:AB=,由折疊的性質(zhì)可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,設(shè)DC=x,則BD=8-x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3,∴CD=3.故選:C.【點(diǎn)睛】本題主要考查了勾股定理與折疊問(wèn)題,熟練掌握翻折的性質(zhì)和勾股定理是解決問(wèn)題的關(guān)鍵.15.D解析:D【分析】根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理求得CE2+CF2=EF2.【詳解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,EF=8,由勾股定理可知CE2+CF2=EF2=64.故選:D.【點(diǎn)睛】此題考查角平分線的定義,直角三角形的判定,勾股定理的運(yùn)用,解題關(guān)鍵在于掌握各性質(zhì)定義.16.C解析:C【分析】一個(gè)三角形中有一個(gè)直角,或三邊滿足勾股定理的逆定理則為直角三角形,否則則不是,據(jù)此依次分析各項(xiàng)即可.【詳解】A.△ABC中,若∠B=∠C-∠A,則∠C=∠A+∠B,則△ABC是直角三角形,本選項(xiàng)正確;B.△ABC中,若a2=(b+c)(b-c),則a2=b2-c2,b2=a2+c2,則△ABC是直角三角形,本選項(xiàng)正確;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,則∠,故本選項(xiàng)錯(cuò)誤;D.△ABC中,若a∶b∶c=5∶4∶3,則△ABC是直角三角形,本選項(xiàng)正確;故選C.【點(diǎn)睛】本題考查的是直角三角形的判定,利用勾股定理的逆定理判斷一個(gè)三角形是否是直角三角形的一般步驟:①確定三角形的最長(zhǎng)邊;②分別計(jì)算出最長(zhǎng)邊的平方與另兩邊的平方和;③比較最長(zhǎng)邊的平方與另兩邊的平方和是否相等.若相等,則此三角形是直角三角形;否則,就不是直角三角形.17.B解析:B【分析】由數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,得PA=2,根據(jù)勾股定理得,進(jìn)而即可得到答案.【詳解】∵數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,∴PA=2,又∵l⊥PA,,∴,∵PB=PC=,∴數(shù)軸上點(diǎn)所表示的數(shù)為:.故選B.【點(diǎn)睛】本題主要考查數(shù)軸上點(diǎn)表示的數(shù)與勾股定理,掌握數(shù)軸上兩點(diǎn)之間的距離求法,是解題的關(guān)鍵.18.D解析:D【分析】此題要分兩種情況:當(dāng)5和13都是直角邊時(shí);當(dāng)13是斜邊長(zhǎng)時(shí);分別利用勾股定理計(jì)算出第三邊長(zhǎng)即可求解.【詳解】當(dāng)5和13都是直角邊時(shí),第三邊長(zhǎng)為:;當(dāng)13是斜邊長(zhǎng)時(shí),第三邊長(zhǎng)為:;故這個(gè)三角形的第三條邊可以是12.故選:D.【點(diǎn)睛】本題主要考查了勾股定理,當(dāng)已知條件中沒有明確哪是斜邊時(shí),要注意討論,一些學(xué)生往往忽略這一點(diǎn),造成丟解.19.B解析:B【分析】根據(jù)“在Rt△ABC中”和“沿BD進(jìn)行翻折”可知,本題考察勾股定理和翻折問(wèn)題,根據(jù)勾股定理和翻折的性質(zhì),運(yùn)用方程的方法進(jìn)行求解.【詳解】∵∠A=90°,AB=6,AC=8,∴BC==10,根據(jù)翻折的性質(zhì)可得A′B=AB=6,A′D=AD,∴A′C=10-6=4.設(shè)CD=x,則A′D=8-x,根據(jù)勾股定理可得x2-(8-x)2=42,解得x=5,故CD=5.故答案為:B.【點(diǎn)睛】本題考察勾股定理和翻折問(wèn)題,根據(jù)勾股定理把求線段的長(zhǎng)的問(wèn)題轉(zhuǎn)化為方程問(wèn)題是解決本題的關(guān)鍵.20.A解析:A【分析】分三種情況討論:把左側(cè)面展開到水平面上,連結(jié)AB;把右側(cè)面展開到正面上,連結(jié)AB,;把向上的面展開到正面上,連結(jié)AB;然后利用勾股定理分別計(jì)算各情況下的AB,再進(jìn)行大小比較.【詳解】把左側(cè)面展開到水平面上,連結(jié)AB,如圖1把右側(cè)面展開到正面上,連結(jié)AB,如圖2把向上的面展開到正面上,連結(jié)AB,如圖3∵∴∴需要爬行的最短距離為25cm故選:A.【點(diǎn)睛】本題考查了平面展開及其最短路徑問(wèn)題:先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點(diǎn)之間的最短路徑.一般情況是兩點(diǎn)之間,線段最短.在平面圖形上構(gòu)造直角三角形解決問(wèn)題.21.A解析:A【分析】過(guò)C作CM⊥AB于M,交AD于P,過(guò)P作PQ⊥AC于Q,由角平分線的性質(zhì)得出PQ=PM,這時(shí)PC+PQ有最小值,為CM的長(zhǎng),然后利用勾股定理和等面積法求得CM的長(zhǎng)即可解答.【詳解】過(guò)C作CM⊥AB于M,交AD于P,過(guò)P作PQ⊥AC于Q,∵AD是∠BAC的平分線,∴PQ=PM,則PC+PQ=PC+PM=CM,即PC+PQ有最小值,為CM的長(zhǎng),∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又,∴,∴PC+PQ的最小值為,故選:A.【點(diǎn)睛】本題考查了角平分線的性質(zhì)、最短路徑問(wèn)題、勾股定理、三角形等面積法求高,解答的關(guān)鍵是掌握線段和最短類問(wèn)題的解決方法:一般是運(yùn)用軸對(duì)稱變換將直線同側(cè)的點(diǎn)轉(zhuǎn)化為異側(cè)的點(diǎn),從而把兩條線段的位置關(guān)系轉(zhuǎn)換,再根據(jù)兩點(diǎn)之間線段最短或垂線段最短,使兩條線段之和轉(zhuǎn)化為一條直線來(lái)解決.22.D解析:D【分析】欲判斷三角形是否為直角三角形,這里給出三邊的長(zhǎng),需要驗(yàn)證兩小邊的平方和等于最長(zhǎng)邊的平方即可.【詳解】①c不一定是斜邊,故錯(cuò)誤;②正確;③若△ABC是直角三角形,c不是斜邊,則a2+b2≠c2,故錯(cuò)誤,所以正確的只有②,故選D.【點(diǎn)睛】本題考查了勾股定理以及勾股定理的逆定理,熟練掌握勾股定理以及勾股定理的逆定理的內(nèi)容是解題的關(guān)鍵.23.C解析:C【分析】根據(jù)題意可設(shè)折斷處離地面的高度OA是x尺,折斷處離竹梢AB是(10-x)尺,結(jié)合勾股定理即可得出折斷處離地面的高度.【詳解】設(shè)折斷處離地面的高度OA是x尺,則折斷處離竹梢AB是(10-x)尺,由勾股定理可得:即:,解得:x=4.2故折斷處離地面的高度OA是4.2尺.故答案選:C.【點(diǎn)睛】本題主要考查直角三角形勾股定理的應(yīng)用,解題的關(guān)鍵是熟練運(yùn)用勾股定理.24.C解析:C【分析】筷子浸沒在水中的最短距離為水杯高度,最長(zhǎng)距離如下圖,是筷子斜臥于杯中時(shí),利用勾股定理可求得.【詳解】當(dāng)筷子筆直豎立在杯中時(shí),筷子浸沒水中距離最短,為杯高=8cmAD是筷子,AB長(zhǎng)是杯子直徑,BC是杯子高,當(dāng)筷子如下圖斜臥于杯中時(shí),浸沒在水中的距離最長(zhǎng)由題意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根據(jù)勾股定理,AC=17cm∴8cm≤h≤17cm故選:C【點(diǎn)睛】本題考查勾股定理在實(shí)際生活中的應(yīng)用,解題關(guān)鍵是將題干中生活實(shí)例抽象成數(shù)學(xué)模型,然后再利用相關(guān)知識(shí)求解.25.B解析:B【解析】試題分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故選B.考點(diǎn):勾股定理的逆定理點(diǎn)評(píng):本題難度中等,主要考查了勾股定理的逆定理,解題的關(guān)鍵熟知勾股定理逆定理的內(nèi)容.26.C解析:C【分析】當(dāng)E1F1在直線EE1上時(shí),,得到AE=14,PE=9,由勾股定理求得AP

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論