難點(diǎn)解析滬科版9年級下冊期末試卷含答案詳解(能力提升)_第1頁
難點(diǎn)解析滬科版9年級下冊期末試卷含答案詳解(能力提升)_第2頁
難點(diǎn)解析滬科版9年級下冊期末試卷含答案詳解(能力提升)_第3頁
難點(diǎn)解析滬科版9年級下冊期末試卷含答案詳解(能力提升)_第4頁
難點(diǎn)解析滬科版9年級下冊期末試卷含答案詳解(能力提升)_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°2、如圖,,,,都是上的點(diǎn),,垂足為,若,則的度數(shù)為()A. B. C. D.3、一個(gè)黑色布袋中裝有3個(gè)紅球和2個(gè)白球,這些球除顏色外其它都相同,從袋子中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率是()A. B. C. D.4、如圖,在Rt△ABC中,,,點(diǎn)D、E分別是AB、AC的中點(diǎn).將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,射線BD與射線CE交于點(diǎn)P,在這個(gè)旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點(diǎn)P運(yùn)動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④5、7個(gè)小正方體按如圖所示的方式擺放,則這個(gè)圖形的左視圖是()A.B. C.D.6、小張同學(xué)去展覽館看展覽,該展覽館有A、B兩個(gè)驗(yàn)票口(可進(jìn)可出),另外還有C、D兩個(gè)出口(只出不進(jìn)).則小張從不同的出入口進(jìn)出的概率是()A. B. C. D.7、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長為()A.3 B. C. D.8、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,將矩形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形的位置,旋轉(zhuǎn)角為.若,則的大小為________(度).2、一個(gè)不透明的袋子中放有3個(gè)紅球和5個(gè)白球,這些球除顏色外均相同,隨機(jī)從袋子中摸出一球,摸到紅球的概率為_____.3、如圖,在中,,是內(nèi)的一個(gè)動點(diǎn),滿足.若,,則長的最小值為_______.4、第24屆世界冬季奧林匹克運(yùn)動會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運(yùn)會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內(nèi)隨機(jī)投擲骰子(假設(shè)骰子落在長方形內(nèi)的每一點(diǎn)都是等可能的),經(jīng)過大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計(jì)宣傳畫上北京冬奧會會徽圖案的面積約為______.5、在Rt△ABC中,∠ACB=90°,AC=AB,點(diǎn)E、F分別是邊CA、CB的中點(diǎn),已知點(diǎn)P在線段EF上,聯(lián)結(jié)AP,將線段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段DP,如果點(diǎn)P、D、C在同一直線上,那么tan∠CAP=_______.6、一個(gè)五邊形共有__________條對角線.7、不透明的袋子里裝有一個(gè)黑球,兩個(gè)紅球,這些球除顏色外無其它差別,從袋子中取出一個(gè)球,不放回,再取出一個(gè)球,記下顏色,兩次摸出的球是一紅—黑的概率是________.三、解答題(7小題,每小題0分,共計(jì)0分)1、在中,,,點(diǎn)E在射線CB上運(yùn)動.連接AE,將線段AE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到EF,連接CF.(1)如圖1,點(diǎn)E在點(diǎn)B的左側(cè)運(yùn)動.①當(dāng),時(shí),則___________°;②猜想線段CA,CF與CE之間的數(shù)量關(guān)系為____________.(2)如圖2,點(diǎn)E在線段CB上運(yùn)動時(shí),第(1)問中線段CA,CF與CE之間的數(shù)量關(guān)系是否仍然成立?如果成立,請說明理由;如果不成立,請求出它們之間新的數(shù)量關(guān)系.2、在同樣的條件下對某種小麥種子進(jìn)行發(fā)芽試驗(yàn),統(tǒng)計(jì)發(fā)芽種子數(shù),獲得如下頻數(shù)表.實(shí)驗(yàn)種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計(jì)該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質(zhì)量為50g.那么播種3公頃該種小麥,估計(jì)約需麥種多少千克(精確到1kg)?3、已知,P是直線AB上一動點(diǎn)(不與A,B重合),以P為直角頂點(diǎn)作等腰直角三角形PBD,點(diǎn)E是直線AD與△PBD的外接圓除點(diǎn)D以外的另一個(gè)交點(diǎn),直線BE與直線PD相交于點(diǎn)F.(1)如圖,當(dāng)點(diǎn)P在線段AB上運(yùn)動時(shí),若∠DBE=30°,PB=2,求DE的長;(2)當(dāng)點(diǎn)P在射線AB上運(yùn)動時(shí),試探求線段AB,PB,PF之間的數(shù)量關(guān)系,并給出證明.4、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個(gè)單位的速度沿向右運(yùn)動,當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動,直接寫出在運(yùn)動過程中與重疊部分面積S與運(yùn)動時(shí)間t(單位:秒)的函數(shù)關(guān)系式;(2)點(diǎn)M為線段的中點(diǎn),當(dāng)(1)中的頂點(diǎn)E運(yùn)動到點(diǎn)C后,將繞著點(diǎn)C繼續(xù)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)P是直線上一動點(diǎn),連接,求的最小值.5、在平面直角坐標(biāo)系xOy中,給出如下定義:若點(diǎn)P在圖形M上,點(diǎn)Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點(diǎn),規(guī)定d(M,N)=0.已知:如圖,點(diǎn)A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點(diǎn),⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.6、如圖,在中,,以AC為直徑的半圓交斜邊AB于點(diǎn)D,E為BC的中點(diǎn),連結(jié)DE,CD.過點(diǎn)D作于點(diǎn)F.(1)求證:DE是的切線;(2)若,,求的半徑.7、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E在AC上,以AE為直徑的⊙O經(jīng)過點(diǎn)D.(1)求證:①BC是⊙O的切線;②;(2)若點(diǎn)F是劣弧AD的中點(diǎn),且CE=3,試求陰影部分的面積.-參考答案-一、單選題1、B【分析】求出正五邊形的一個(gè)內(nèi)角的度數(shù),再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理計(jì)算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點(diǎn)睛】本題考查了正多邊形和圓,求出正五邊形的一個(gè)內(nèi)角度數(shù)是解決問題的關(guān)鍵.2、B【分析】連接OC.根據(jù)確定,,進(jìn)而計(jì)算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對的圓周角和圓心角,∴.故選:B.【點(diǎn)睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應(yīng)用這些知識點(diǎn)是解題關(guān)鍵.3、D【分析】根據(jù)隨機(jī)事件概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進(jìn)行計(jì)算即可.【詳解】解:∵一個(gè)黑色布袋中裝有3個(gè)紅球和2個(gè)白球,這些球除顏色外其它都相同,∴抽到每個(gè)球的可能性相同,∴布袋中任意摸出1個(gè)球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點(diǎn)睛】本題考查了隨機(jī)事件概率的求法,熟練掌握隨機(jī)事件概率公式是解題關(guān)鍵.4、B【分析】根據(jù),,點(diǎn)D、E分別是AB、AC的中點(diǎn).得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點(diǎn)P在以點(diǎn)O為圓心,OA長為半徑,的圓上運(yùn)動軌跡為,L可判斷④點(diǎn)P運(yùn)動的路徑長為正確即可.【詳解】解:∵,,點(diǎn)D、E分別是AB、AC的中點(diǎn).∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點(diǎn)P在以點(diǎn)O為圓心,OA長為半徑,的圓上運(yùn)動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點(diǎn)P運(yùn)動的路徑長為正確;正確的是①②④.故選B.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點(diǎn)定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準(zhǔn)確圖形是解題關(guān)鍵.5、C【分析】細(xì)心觀察圖中幾何體擺放的位置,根據(jù)左視圖是從左面看到的圖象判定則可.【詳解】解:從左邊看,是左邊3個(gè)正方形,右邊一個(gè)正方形.故選:C.【點(diǎn)睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.6、D【分析】先畫樹狀圖得到所有的等可能性的結(jié)果數(shù),然后找到小張從不同的出入口進(jìn)出的結(jié)果數(shù),最后根據(jù)概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結(jié)果數(shù),其中小張從不同的出入口進(jìn)出的結(jié)果數(shù)有6種,∴P小張從不同的出入口進(jìn)出的結(jié)果數(shù),故選D.【點(diǎn)睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關(guān)鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.7、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點(diǎn)睛】本題考查了圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì),掌握圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì)是解題的關(guān)鍵.8、A【分析】根據(jù)等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點(diǎn)睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關(guān)鍵.二、填空題1、20【分析】先利用旋轉(zhuǎn)的性質(zhì)得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內(nèi)角和計(jì)算出∠BAD‘=70°,然后利用互余計(jì)算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.2、【分析】讓紅球的個(gè)數(shù)除以球的總數(shù)即為摸到紅球的概率.【詳解】解:∵紅球的個(gè)數(shù)為3個(gè),球的總數(shù)為3+5=8(個(gè)),∴摸到紅球的概率為,故答案為:.【點(diǎn)睛】本題考查了概率公式的應(yīng)用,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、2【分析】取AC中點(diǎn)O,由勾股定理的逆定理可知∠ADC=90°,則點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點(diǎn)O,∵,即,∴∠ADC=90°,∴點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點(diǎn)睛】本題主要考查了一點(diǎn)到圓上一點(diǎn)的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點(diǎn)D的運(yùn)動軌跡.4、0.9【分析】根據(jù)題意可得長方形的面積,然后依據(jù)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點(diǎn)睛】題目主要考查根據(jù)頻率計(jì)算滿足條件的情況,理解題意,熟練掌握頻率的計(jì)算方法是解題關(guān)鍵.5、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計(jì)算求解即可;②如圖2所示,當(dāng)點(diǎn)P在線段CD上時(shí),同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計(jì)算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當(dāng)點(diǎn)D在線段PC上時(shí),延長AD交BC的延長線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當(dāng)點(diǎn)P在線段CD上時(shí),同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點(diǎn)P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點(diǎn)睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉(zhuǎn),直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識點(diǎn).解題的關(guān)鍵在于表示出正切中線段的長度.6、5【分析】由n邊形的對角線有:條,再把代入計(jì)算即可得.【詳解】解:邊形共有條對角線,五邊形共有條對角線.故答案為:5【點(diǎn)睛】本題考查的是多邊形的對角線的條數(shù),掌握n邊形的對角線的條數(shù)是解題的關(guān)鍵.7、【分析】根據(jù)題意列出表格,可得6種等可能結(jié)果,其中一紅—黑的有4種,再利用概率公式,即可求解.【詳解】解:根據(jù)題意列出表格如下:黑球紅球1紅球2黑球紅球1、黑球紅球2、黑球紅球1黑球、紅球1紅球2、紅球1紅球2黑球、紅球2紅球1、紅球2得到6種等可能結(jié)果,其中一紅—黑的有4種,所以兩次摸出的球是一紅—黑的概率是.故答案為:【點(diǎn)睛】本題主要考查了求概率,能夠利用畫樹狀圖或列表格的方法解答是解題的關(guān)鍵.三、解答題1、(1)①;②(2)不成立,【分析】(1)①由直角三角形的性質(zhì)可得出答案;②過點(diǎn)E作ME⊥EC交CA的延長線于M,由旋轉(zhuǎn)的性質(zhì)得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,證明△FEC≌△AEM(SAS),由全等三角形的性質(zhì)得出CF=AM,由等腰直角三角形的性質(zhì)可得出結(jié)論;(2)過點(diǎn)F作FH⊥BC交BC的延長線于點(diǎn)H.證明△ABE≌△EHF(AAS),由全等三角形的性質(zhì)得出FH=BE,EH=AB=BC,由等腰直角三角形的性質(zhì)可得出結(jié)論;(1)①∵,,,∴,∵sin∠EAB=∴,故答案為:30°;②.如圖1,過點(diǎn)E作交CA的延長線于M,∵,,∴,∴,∴,∴,∵將線段AE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到EF,∴,,∴,在△FEC和△AEM中,∴,∴,∴,∵為等腰直角三角形,∴,∴;故答案為:;(2)不成立.如圖2,過點(diǎn)F作交BC的延長線于點(diǎn)H.∴,,∵,∴,在△FEC和△AEM中,∴,∴,,∴,∴為等腰直角三角形,∴.又∵,即.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),解直角三角形,等腰直角三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形的面積,熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.2、(1)該麥種的發(fā)芽概率約為95%;(2)約需麥種790千克【分析】(1)利用頻率估計(jì)麥種的發(fā)芽率,大數(shù)次實(shí)驗(yàn),當(dāng)頻率固定到一個(gè)穩(wěn)定值時(shí),可根據(jù)頻率公式=頻數(shù)÷總數(shù)計(jì)算即可;(2)設(shè)約需麥種x千克,根據(jù)x千克轉(zhuǎn)化為克×1000,再轉(zhuǎn)為顆?!?0×1000,根據(jù)發(fā)芽率再×95%,根據(jù)芽轉(zhuǎn)苗再×80%,等于三公頃地需要的苗總數(shù),例方程x×1000÷50×1000×95%×80%=4000000×3,解方程即可(1)解:根據(jù)實(shí)驗(yàn)數(shù)量變大,發(fā)芽數(shù)也在增大,2850÷3000×100%=95%,故該麥種的發(fā)芽概率約為95%;(2)解:設(shè)約需麥種x千克,x×1000÷50×1000×95%×80%=4000000×3,化簡得15200x=12000000,解得x=789,答:約需麥種790千克【點(diǎn)睛】本題考查用頻率估計(jì)發(fā)芽率,一元一次方程解應(yīng)用題,掌握用頻率估計(jì)發(fā)芽率,一元一次方程解應(yīng)用題的方法與步驟是解題關(guān)鍵.3、(1)(2)PF=AB-PB或PF=AB+PB,理由見解析【分析】(1)根據(jù)△PBD等腰直角三角形,PB=2,求出DB的長,由⊙O是△PBD的外接圓,∠DBE=30°,可得答案;(2)根據(jù)同弧所對的圓周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可證△APD≌△FPB,可得答案.【詳解】解:(1)由題意畫以下圖,連接EP,∵△PBD等腰直角三角形,⊙O是△PBD的外接圓,∴∠DPB=∠DEB=90°,∵PB=2,∴,∵∠DBE=30°,∴(2)①點(diǎn)P在點(diǎn)A、B之間,由(1)的圖根據(jù)同弧所對的圓周角相等,可得:∠ADP=∠FBP,又∵△PBD等腰直角三角形,∴∠DPB=∠APD=90°,DP=BP,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∵AP+PB=AB∴FP+PB=AB,∴FP=AB-PB,②點(diǎn)P在點(diǎn)B的右側(cè),如下圖:∵△PBD等腰直角三角形,∴∠DPB=∠APF=90°,DP=BP,∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,∴∠PBF=∠PDA,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∴AB+PB=AP,∴AB+PB=PF,∴PF=AB+PB.綜上所述,F(xiàn)P=AB-PB或PF=AB+PB.【點(diǎn)睛】本題考查了圓的性質(zhì),等腰直角三角形,三角形全等的判定,做題的關(guān)鍵是注意(2)的兩種情況.4、(1)(2)【分析】(1)根據(jù)運(yùn)動重合部分不同情況分四種情況討論,①當(dāng)時(shí),②當(dāng)時(shí),③當(dāng)時(shí),④當(dāng)時(shí),根據(jù)三角形的面積公式求函數(shù)解析式即可.(2)作關(guān)于的對稱點(diǎn),連接,過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)交于點(diǎn),交于點(diǎn),則的最小值即為的長,進(jìn)而解直角三角形,即可求得的長,即的最小值(1)等腰直角三角形,,,,在,,①當(dāng)時(shí),如圖,重疊部分面積為,設(shè)交于點(diǎn),過點(diǎn)作于點(diǎn),以每秒1個(gè)單位的速度沿向右運(yùn)動,設(shè),則在,,即解得②當(dāng)時(shí),如圖,重疊部分面積為四邊形的面積,設(shè)交于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)交于點(diǎn),,③當(dāng)時(shí),此時(shí)重疊面積為④當(dāng)時(shí),如圖,設(shè)交于點(diǎn),此時(shí)重疊面積為四邊形的面積,,綜上所述,(2)如圖,作關(guān)于的對稱點(diǎn),連接,過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)交于點(diǎn),交于點(diǎn),則在中,則的最小值即為的長在中,設(shè),,則中,為的中點(diǎn),則,即的最小值為【點(diǎn)睛】本題考查了動點(diǎn)的函數(shù)問題,解直角三角形,(1)分類討論,(2)轉(zhuǎn)化線段是解題的關(guān)鍵.5、(1)0,;(2);(3)【分析】(1)根據(jù)新定義,即可求解;(2)過點(diǎn)O作OD⊥AB于點(diǎn)D,根據(jù)三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當(dāng)⊙O的半徑等于OD時(shí)最小,當(dāng)⊙O的半徑等于OB時(shí)最大,即可求解;(3)過點(diǎn)C作CN⊥AB于點(diǎn)N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當(dāng)點(diǎn)C在點(diǎn)A的右側(cè)時(shí),當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),當(dāng)點(diǎn)C在點(diǎn)A的左側(cè)時(shí),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論