考點攻克遼寧省燈塔市中考數學真題分類(勾股定理)匯編專題攻克試卷_第1頁
考點攻克遼寧省燈塔市中考數學真題分類(勾股定理)匯編專題攻克試卷_第2頁
考點攻克遼寧省燈塔市中考數學真題分類(勾股定理)匯編專題攻克試卷_第3頁
考點攻克遼寧省燈塔市中考數學真題分類(勾股定理)匯編專題攻克試卷_第4頁
考點攻克遼寧省燈塔市中考數學真題分類(勾股定理)匯編專題攻克試卷_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省燈塔市中考數學真題分類(勾股定理)匯編專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、下面各圖中,不能證明勾股定理正確性的是()A. B. C. D.2、如圖所示,圓柱的高AB=3,底面直徑BC=3,現在有一只螞蟻想要從A處沿圓柱表面爬到對角C處捕食,則它爬行的最短距離是()A. B. C. D.3、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F,若AC=3,AB=5,則CE的長為()A. B. C. D.4、如圖所示的網格是正方形網格,A,B,C,D是網格線交點,則與的大小關系為(

)A. B. C. D.無法確定5、以下列各組數的長為邊作三角形,不能構成直角三角形的是(

)A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,156、如圖,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,連接AE,BD交于點F,則BF的長為(

)A. B. C. D.7、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(

)A.50cm B.120cm C.140cm D.100cm第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,矩形ABCD中,AD=6,AB=8.點E為邊DC上的一個動點,△AD'E與△ADE關于直線AE對稱,當△CD'E為直角三角形時,DE的長為__.2、附加題:觀察以下幾組勾股數,并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…請你寫出有以上規(guī)律的第⑤組勾股數:________.3、把一根長12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.4、如圖,將一個長方形紙片沿折疊,使C點與A點重合,若,則線段的長是_________.5、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點C與點A重合,折痕為DE,則△ABE的周長為.6、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數學史上稱為“希波克拉底月牙”,當,時,陰影部分的面積為________.7、無蓋圓柱形杯子的展開圖如圖所示.將一根長為20cm的細木筷斜放在該杯子內,木筷露在杯子外面的部分至少有__________cm.8、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長是________.三、解答題(7小題,每小題10分,共計70分)1、已知m>0,若3m+2,4m+8,5m+8是一組勾股數,求m的值.2、如圖,在四邊形中,,,于,(1)求證:;(2)若,,求四邊形的面積.3、勾股定理是人類最偉大的十個科學發(fā)現之一,在《周髀算經》中就有“若勾三,股四,則弦五”的記載,漢代數學家趙爽為證明勾股定理創(chuàng)制的“趙爽弦圖”也流傳至今.迄今為止已有多種證明勾股定理的方法.下面是數學課上創(chuàng)新小組驗證過程的一部分.請認真閱讀并根據他們的思路將后續(xù)的過程補充完整:將兩張全等的直角三角形紙片按圖所示擺放,其中,點在線段上,點在邊兩側,試證明:.4、某海上有一小島,為了測量小島兩端A,B的距離,測量人員設計了一種測量方法,如圖,已知B是CD的中點,E是BA延長線上的一點,且∠CED=90°,測得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過點C作CF⊥AB交AB的延長線于點F,求值.5、拖拉機行駛過程中會對周圍產生較大的噪聲影響.如圖,有一臺拖拉機沿公路AB由點A向點B行駛,已知點C為一所學校,且點C與直線AB上兩點A,B的距離分別為150m和200m,又AB=250m,拖拉機周圍130m以內為受噪聲影響區(qū)域.(1)學校C會受噪聲影響嗎?為什么?(2)若拖拉機的行駛速度為每分鐘50米,拖拉機噪聲影響該學校持續(xù)的時間有多少分鐘?6、(1)圖1是由有20個邊長為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個大正方形(內部的粗實線表示分割線),請你在圖2的網格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請你利用圖2中拼成的大正方形證明勾股定理.(3)應用:測量旗桿的高度:校園內有一旗桿,小希想知道旗桿的高度,經觀察發(fā)現從頂端垂下一根拉繩,于是他測出了下列數據:①測得拉繩垂到地面后,多出的長度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請你根據所測得的數據設計可行性方案,解決這一問題.(畫出示意圖并計算出這根旗桿的高度).7、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡整式A.發(fā)現A=B2.求整式B.聯想:由上可知,B2=(n2﹣1)2+(2n)2,當n>1時,n2﹣1,2n,B為直角三角形的三邊長,如圖,填寫下表中B的值;直角三角形三邊n2﹣12nB勾股數組Ⅰ8勾股數組Ⅱ35-參考答案-一、單選題1、C【解析】【分析】把各圖中每一部分的面積和整體的面積分別列式表示,根據每一部分的面積之和等于整體的面積,分別化簡,再根據化簡結果即可解答.【詳解】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能證明勾股定理,故本選項不符合題意;B、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項不符合題意;C、根據圖形不能證明勾股定理,故本選項符合題意;D、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項不符合題意;故選C.【考點】本題考查勾股定理的證明,解題的關鍵是利用構圖法來證明勾股定理.2、C【解析】【分析】要求最短路徑,首先要把圓柱的側面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側面展開,展開圖如圖所示,點A、C之間的最短距離為線段AC的長.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長,AD=π,∴AC=,故選C.【考點】本題考查了平面展開-最短路徑問題,解題的關鍵是會將圓柱的側面展開,并利用勾股定理解答.3、A【解析】【分析】根據三角形的內角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據角平分線和對頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質得出答案.【詳解】過點F作FG⊥AB于點G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A.【考點】本題考查了直角三角形性質、等腰三角形的性質和判定,三角形的內角和定理以及相似三角形的判定與性質等知識,關鍵是推出∠CEF=∠CFE.4、C【解析】【分析】根據每個小網格都為正方形,設每個網格為1,由勾股定理可以求出AD、AC、CD的長,再由勾股定理的逆定理得到△ACD為等腰直角三角形,同理可得△ABC為等腰直角三角形,即∠BAC=∠DAC.【詳解】解:如圖,設正方形每個網格的邊長都為1,連接CD、BC,則,,,,為等腰直角三角形,,同理:,,,,為等腰直角三角形,,.故選:C.【考點】本題考查勾股定理的性質、勾股定理的逆定理以及等腰直角三角形的判定,解本題的關鍵要掌握勾股定理及逆定理的基本知識.5、B【解析】【分析】先求出兩小邊的平方和,再求出最長邊的平方,最后看看是否相等即可.【詳解】解:A、32+42=52,故是直角三角形,不符合題意;B、42+52≠62,故不是直角三角形,符合題意;C、62+82=102,故是直角三角形,不符合題意;D、92+122=152,故是直角三角形,不符合題意;故選:B.【考點】此題主要考查了勾股定理逆定理,關鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.6、B【解析】【分析】由已知證得,進而確定三個內角的大小,求得,進而可得到答案.【詳解】解:∵∴∴又∵∴∴∵在等腰直角三角形中∴∴∴∵∴故選:B.【考點】本題考查全等三角形的判定和性質,勾股定理;熟練掌握相關知識是解題的關鍵.7、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點】本題考查了勾股定理的應用,理解題意,畫出圖形是解題的關鍵.二、填空題1、3或6【解析】【分析】分兩種情況分別求解,(1)當∠CED′=90°時,如圖(1),根據軸對稱的性質得∠AED=∠AED′=45′,得DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據軸對稱的性質得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據勾股定理得AC=10,設DE=D′E=x,則EC=CD?DE=8?x,根據勾股定理得,D′E2+D′C2=EC2,代入相關的值,計算即可.【詳解】解:當∠CED′=90°時,如圖(1),∵∠CED′=90°,根據軸對稱的性質得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據軸對稱的性質得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據勾股定理得,∴CD′=10?6=4,設DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點】本題考查了矩形的性質、勾股定理、軸對稱的性質,熟練掌握矩形的性質、勾股定理、軸對稱的性質的綜合應用,分情況討論,作出圖形是解題關鍵.2、11,60,61【解析】【分析】由所給勾股數發(fā)現第一個數是奇數,且逐步遞增2,知第5組第一個數是11,第二、第三個數相差為1,設第二個數為x,則第三個數為,由勾股定理得:,計算求解即可.【詳解】解:由所給勾股數發(fā)現第一個數是奇數,且逐步遞增2,∴知第5組第一個數是11,第二、第三個數相差為1,設第二個數為x,則第三個數為,由勾股定理得:,解得x=60,∴第5組數是:11、60、61故答案為:11、60、61.【考點】本題考查了數字類規(guī)律,勾股定理等知識.解題的關鍵在于推導規(guī)律.3、直角三角形【解析】【分析】首先計算出第三條鐵絲的長度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點】此題主要考查了勾股定理逆定理,關鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.4、【解析】【分析】根據折疊的性質和勾股定理即可求得.【詳解】解:∵長方形紙片,∴,,根據折疊的性質可得,,,設,,根據勾股定理,即,解得,故答案為:.【考點】本題考查折疊與勾股定理.能正確表示直角三角形的三邊是解題關鍵.5、7【解析】【分析】根據勾股定理求得BC,再根據折疊性質得到AE=CE,進而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點】本題考查勾股定理、折疊性質,熟練掌握勾股定理是解答的關鍵.6、24【解析】【分析】根據勾股定理得到AC2=AB2-BC2,先求解AC,再根據陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點】本題考查的是勾股定理、半圓面積計算,掌握勾股定理和半圓面積公式是解題的關鍵.7、5【解析】【分析】根據題意直接利用勾股定理得出杯子內的筷子長度,進而得出答案.【詳解】解:由題意可得:杯子內的筷子長度為:=15,則木筷露在杯子外面的部分至少有:20?15=5(cm).故答案為5.【考點】此題主要考查了勾股定理的應用,正確得出杯子內筷子的長是解決問題的關鍵.8、3【解析】【分析】過點C作CE∥AB交AD延長線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過點C作CE∥AB交AD延長線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點】本題考查中線性質,平行線性質,三角形全等判定與性質,勾股定理,掌握中線性質,平行線性質,三角形全等判定與性質,勾股定理,關鍵是利用輔助線構造三角形全等.三、解答題1、m=1【解析】【分析】根據勾股數定義:滿足a2+b2=c2的三個正整數,稱為勾股數可得:(3m+2)2+(4m+8)2=(5m+8)2,再解方程即可.【詳解】解:m>0,3m+2,4m+8,5m+8是一組勾股數,(3m+2)2+(4m+8)2=(5m+8)2,解得:m=1.【考點】此題主要考查了勾股數,關鍵是掌握勾股數定義.2、(1)詳見解析;(2)S四邊形ABCD=56【解析】【分析】(1)由等角的余角相等可得∠DAC=∠ABE,再根據題意可得Rt△BAE≌Rt△ADC,即可證;(2)根據勾股定理算出AC,由全等可得BE=AC,再算出△ACD的面積和△ABC的面積相加即可.【詳解】解:(1)∵BE⊥AC,∴∠ABE+∠BAE=90°,∵BAD=90°,∴∠BAE+∠DAC=90°,∴∠DAC=∠ABE,又∵AB=AD,∠BEA=∠ACD,∴Rt△BAE≌Rt△ADC(AAS),∴BE=AC.(2)∵AB=AD=10,CD=6,∠ACD=90°,∴,∵Rt△BAE≌Rt△ADC,∴BE=AC=8,∴.【考點】本題考查三角形全等的判定和性質,三角形面積,關鍵在于牢記基礎知識并靈活使用.3、見解析.【解析】【分析】首先連結,作延長線于,則,根據,易證,再根據,,兩者相等,整理即可得證.【詳解】證明:連結,作延長線于,則即,∴∴即有:∴【考點】本題考查了勾股定理的證明,用兩種方法表示出四邊形ADFB的面積是解本題的關鍵.4、(1)33.4海里(2)【解析】【分析】(1)利用勾股定理求出CD,再根據斜邊的中線等于斜邊的一半求出BE,則AB可求;(2)設BF=x海里.利用勾股定理先表示出CF2,在Rt△CFE中,∠CFE=90°,利用勾股定理有CF2+EF2=CE2,即,解方程即可得解.(1)在△DCE中,∠CED=90°,DE=60海里,CE=80海里,由勾股定理可得(海里),∵B是CD的中點,∴(海里),∴AB=BE-AE=50-16.6=33.4(海里)答:小島兩端A、B的距離是33.4海里;(2)設BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=502-x2=2500-x2,在Rt△CFE中,∠CFE=90°,∴CF2+EF2=CE2,即,解得x=14,∴答:值為.【考點】本題主要考查了勾股定理的實際應用的知識,在直角三角形中靈活利用勾股定理是解答本題的關鍵.5、(1)會受噪聲影響,理由見解析;(2)有2分鐘;【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而利用三角形面積得出CD的長,進而得出學校C是否會受噪聲影響;(2)利用勾股定理得出ED以及EF的長,進而得出拖拉機噪聲影響該學校持續(xù)的時間.【詳解】解:(1)學校C會受噪聲影響.理由:如圖,過點C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉機周圍130m以內為受噪聲影響區(qū)域,∴學校C會受噪聲影響.(2)當EC=130m,FC=130m時,正好影響C學校,∵ED==50(m),∴EF=50×2=100(m),∵拖拉機的行駛速度為每分鐘50米,∴100÷50=2(分鐘),即拖拉機噪聲影響該學校持續(xù)的時間有2分鐘.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關鍵是構造出直角三角形,再利用勾股定理解答.6、(1)見解析;(2)見解析;(3)在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長0.5米,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論