強化訓練天津南開大附屬中7年級數學下冊第四章三角形同步測評試題(解析版)_第1頁
強化訓練天津南開大附屬中7年級數學下冊第四章三角形同步測評試題(解析版)_第2頁
強化訓練天津南開大附屬中7年級數學下冊第四章三角形同步測評試題(解析版)_第3頁
強化訓練天津南開大附屬中7年級數學下冊第四章三角形同步測評試題(解析版)_第4頁
強化訓練天津南開大附屬中7年級數學下冊第四章三角形同步測評試題(解析版)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天津南開大附屬中7年級數學下冊第四章三角形同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.2、BP是∠ABC的平分線,CP是∠ACB的鄰補角的平分線,∠ABP=20°,∠ACP=50°,則∠P=()A.30° B.40° C.50° D.60°3、以下列長度的各組線段為邊,能組成三角形的是()A.,, B.,,C.,, D.,,4、如圖,AB=AC,點D、E分別在AB、AC上,補充一個條件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC5、如圖,在中,已知點,,分別為,,的中點,且,則的面積是()A. B.1 C.5 D.6、根據下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,7、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點,在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數為()A.54° B.56° C.64° D.66°8、如圖,已知AB=AD,CB=CD,可得△ABC≌△ADC,則判斷的依據是()A.SSS B.SAS C.ASA D.HL9、下列長度的三條線段,能組成三角形的是()A.3,4,8 B.5,6,11 C.1,3,5 D.5,6,1010、已知的三邊長分別為a,b,c,則a,b,c的值可能分別是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,10第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在△ABC中,AD平分∠CAB,BD⊥AD,已知△ADC的面積為14,△ABD的面積為10,則△ABC的面積為______.2、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數為_____.3、如圖,△ABC是一個等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個即可)4、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點P,點E、F分別在邊BC、AC上,且都不與點C重合,若∠EPF=45°,連接EF,當AC=6,BC=8,AB=10時,則△CEF的周長為_____.5、已知:如圖,AB=DB.只需添加一個條件即可證明.這個條件可以是______.(寫出一個即可).6、某段河流的兩岸是平行的,數學興趣小組在老師帶領下不用涉水過河就測得河的寬度,他們是這樣做的:①在河流的一條岸邊B點,選對岸正對的一棵樹A;②沿河岸直走20米有一樹C,繼續(xù)前行20米到達D處;③從D處沿河岸垂直的方向行走,當到達A樹正好被C樹遮擋住的E處停止行走;④測得DE的長為5米;則河的寬度為_____米.7、如圖,已知AB=3,AC=CD=1,∠D=∠BAC=90°,則△ACE的面積是_____.8、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結論有_____.(填序號)9、如圖,點B、E、C、F在一條直線上,AB=DE,BE=CF,請?zhí)砑右粋€條件______,使△ABC≌△DEF.10、等腰三角形的一條邊長為4cm,另一條邊長為6cm,則它的周長是________.三、解答題(6小題,每小題10分,共計60分)1、已知:如圖,AC、BD相交于點O,,.求證:2、如圖,在長方形ABCD中,AB=4,BC=5,延長BC到點E,使得CE=CD,連結DE.若動點P從點B出發(fā),以每秒2個單位的速度沿著BC-CD-DA向終點A運動,設點P的運動時間為t秒.(1)CE=;當點P在BC上時,BP=(用含有t的代數式表示);(2)在整個運動過程中,點P運動了秒;(3)當t=秒時,△ABP和△DCE全等;(4)在整個運動過程中,求△ABP的面積.3、已知:如圖,AD,BE相交于點O,AB⊥BE,DE⊥AD,垂足分別為B,D,OA=OE.求證:△ABO≌△EDO.4、如圖,在四邊形ABCD中,AD∥BC,∠1=∠2,BD=BC.(1)求證:△ABD≌△ECB(2)若∠1=25°,∠DBC=30°,求∠DEC的度數.5、如圖,在中,,于點,,平分交于點,的延長線交于點.求證:.6、在四邊形ABCD中,,點E在直線AB上,且.(1)如圖1,若,,,求AB的長;(2)如圖2,若DE交BC于點F,,求證:.-參考答案-一、單選題1、C【分析】根據三角形的三邊關系可得,再解不等式可得答案.【詳解】解:設三角形的第三邊為,由題意可得:,即,故選:C.【點睛】本題主要考查了三角形的三邊關系,解題的關鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.2、A【分析】根據角平分線的定義以及一個三角形的外角等于與它不相鄰的兩個內角和,可求出∠P的度數.【詳解】∵BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM?∠CBP=50°?20°=30°,故選:A.【點睛】本題考查三角形外角性質以及角平分線的定義,解題時注意:一個三角形的外角等于與它不相鄰的兩個內角的和.3、C【分析】根據三角形三條邊的關系計算即可.【詳解】解:A.∵2+4=6,∴,,不能組成三角形;B.∵2+5<9,∴,,不能組成三角形;C.∵7+8>10,∴,,能組成三角形;D.∵6+6<13,∴,,不能組成三角形;故選C.【點睛】本題考查了三角形三條邊的關系,熟練掌握三角形三條邊的關系是解答本題的關鍵.三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.4、C【分析】根據全等三角形的判定定理進行判斷即可.【詳解】解:根據題意可知:AB=AC,,若,則根據可以證明△ABE≌△ACD,故A不符合題意;若AD=AE,則根據可以證明△ABE≌△ACD,故B不符合題意;若BE=CD,則根據不可以證明△ABE≌△ACD,故C符合題意;若∠AEB=∠ADC,則根據可以證明△ABE≌△ACD,故D不符合題意;故選:C.【點睛】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解本題的關鍵.5、B【分析】根據三角形面積公式由點為的中點得到,同理得到,則,然后再由點為的中點得到.【詳解】解:點為的中點,,點為的中點,,,點為的中點,.故選:.【點睛】本題考查了三角形的中線與面積的關系,解題的關鍵是掌握是三角形的中線把三角形的面積平均分成兩半.6、B【分析】根據三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關鍵.7、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點睛】本題考查全等三角形的判定與性質,掌握全等三角形的判定定理與性質是解題的關鍵.8、A【分析】由利用邊邊邊公理證明即可.【詳解】解:故選A【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明三角形全等”是解本題的關鍵.9、D【分析】根據圍成三角形的條件逐個分析求解即可.【詳解】解:A、∵,∴3,4,8不能圍成三角形,不符合題意;B、∵,∴5,6,11不能圍成三角形,不符合題意;C、∵,∴1,3,5不能圍成三角形,不符合題意;D、∵,∴5,6,10能圍成三角形,符合題意,故選:D.【點睛】此題考查了圍成三角形的條件,解題的關鍵是熟練掌握圍成三角形的條件.圍成三角形的條件:兩邊之和大于第三邊,兩邊只差小于第三邊.10、C【分析】三角形的三邊應滿足兩邊之和大于第三邊,兩邊之差小于第三邊,據此求解.【詳解】解:A、1+2=3,不能組成三角形,不符合題意;B、3+4=7,不能組成三角形,不符合題意;C、2+3>4,能組成三角形,符合題意;D、4+5<10,不能組成三角形,不符合題意;故選:C.【點睛】本題考查了三角形的三邊關系,滿足兩條較小邊的和大于最大邊即可.二、填空題1、28【分析】延長BD交AC于點E,可得△ABD≌△AED,則△ABD與△AED的面積相等,點D是BE的中點,從而△CED與△CBD的面積相等,且可求得△CED的面積,進而求得結果.【詳解】延長BD交AC于點E,如圖所示∵BD⊥AD∴∠ADB=∠ADE=90°∵AD平分∠CAB∴∠BAD=∠CAD∵AD=AD∴△ABD≌△AED(ASA)∴△ABD與△AED的面積相等,BD=ED∴點D是BE的中點∴△CED與△CBD的面積相等,且△CED的面積等于△ADC的面積與△ABD的面積的差,即為14-10=4∴△CBD的面積為4∴△ABC的面積=14+10+4=28故答案為:28【點睛】本題考查了全等三角形的判定與性質,三角形一邊上的中線平分此三角形的面積等知識,關鍵是構造輔助線并證明△ABD≌△AED.2、110°【分析】延長BD交AC于點E,根據三角形的外角性質計算,得到答案.【詳解】延長BD交AC于點E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點睛】本題考查了三角形外角的性質,三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線DE是解題的關鍵.3、CD=BE(答案不唯一)【分析】△ABC是一個等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對應角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運用是解題關鍵.4、4【分析】根據題意過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ,進而利用全等三角形的性質證明EF=EM+EN,即可得出結論.【詳解】解:如圖,過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點睛】本題考查角平分線的性質定理,正方形的判定,全等三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問.5、AC=DC【分析】由題意可得,BC為公共邊,AB=DB,即添加一組邊對應相等,可證△ABC與△DBC全等.【詳解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC與△DBC中,,∴△ABC≌△DBC(SSS),故答案為:AC=DC.【點睛】本題考查了全等三角形的判定,靈活運用全等三角形的判定是本題的關鍵.6、5【分析】將題目中的實際問題轉化為數學問題,利用全等三角形的判定方法證得兩個三角形全等即可得出答案.【詳解】解:由題意知,在和中,,,∴,即河的寬度是5米,故答案為:5.【點睛】題目主要考查全等三角形的應用,熟練應用全等三角形的判定定理和性質是解題關鍵.7、##【分析】先根據三角形全等的判定定理證出,再根據全等三角形的性質可得,然后利用三角形的面積公式即可得.【詳解】解:在和中,,,,則的面積是,故答案為:.【點睛】本題考查了三角形全等的判定定理與性質,熟練掌握三角形全等的判定方法是解題關鍵.8、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據③△CQB≌△CPA(ASA),再根據∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據內錯角相等,兩直線平行,可知②正確;④根據∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質,BC∥DE,再根據平行線的性質得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結論有:①②③⑤.故答案為:①②③⑤.【點睛】本題綜合考查等邊三角形判定與性質、全等三角形的判定與性質、平行線的判定與性質等知識點的運用.要求學生具備運用這些定理進行推理的能力.9、(答案不唯一)【分析】添加條件AC=DF,即可利用SSS證明△ABC≌△DEF.【詳解】解:添加條件AC=DF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故答案為:AC=DF(答案不唯一).【點睛】本題主要考查了全等三角形的判定,解題的關鍵在于能夠熟練掌握全等三角形的判定條件.10、16cm或14cm【分析】根據題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當腰為6cm時,它的周長為6+6+4=16(cm);②當底為6cm時,它的周長為6+4+4=14(cm);故答案為:16cm或14cm.【點睛】本題考查了等腰三角形的性質的應用,注意:等腰三角形的兩腰相等,注意分類討論.三、解答題1、見解析.【分析】利用“”證明,再利用全等三角形的性質證明即可.【詳解】證明:在與中,,;.【點睛】本題考查了全等三角形的判定與性質,解題的關鍵是熟練掌握三角形全等的判定方法.2、(1)2,2t;(2)7;(3)1或6;(4)△ABP的面積為.【分析】(1)根據CE=CD可求得CE的長,利用速度時間即可求得BP的長;(2)先計算出總路程,再利用路程速度即可計算出用時;(3)分兩種情況,利用全等三角形的性質即可求解;(4)分三種情況,利用三角形的面積公式求解即可.【詳解】解:(1)∵CE=CD,AB=CD=4,∴CE=2,∵點P從點B出發(fā),以每秒2個單位的速度運動,∴BP=2t;故答案為:2,2t;(2)點P運動的總路程為BC+CD+DA=5+4+5=14,∴在整個運動過程中,點P運動了(秒);故答案為:7;(3)當點P在BC上時,△ABP≌△DCE,∴BP=CE=2,∴2t=2,解得:t=1;當點P在AD上時,△BAP≌△DCE,∴AP=CE=2,點P運動的總路程為BC+CD+DA-AP=5+4+5-2=12,∴2t=12,解得:t=6;綜上,當t=1或6秒時,△ABP和△DCE全等;故答案為:1或6;(4)當點P在BC上,即0<t時,AB=4,BP=2t,∴△ABP的面積為ABBP=4t;當點P在CD上,即<t時,AB=4,BC=5,∴△ABP的面積為ABBC=10;當點P在BC上,即7時,AB=4,AP=14-2t,∴△ABP的面積為ABBP=28-4t;綜上,△ABP的面積為.【點睛】本題考查了全等三角形的性質等知識,解題的關鍵是學會用分類討論的思想思考問題.3、見解析【分析】利用AAS即可證明△ABO≌△EDO.【詳解】證明:∵AB⊥BE,DE⊥AD,∴∠B=∠D=90°.在△ABO和△EDO中,∴△ABO≌△EDO.【點睛】本題考查了全等三角形的判定,熟練掌握三角形全等的判定方法是解題的關鍵.4、(1)見解析;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論