




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
高考專題1把不等式轉(zhuǎn)化為f >f 判斷函數(shù)f(x“f”等式(組)但要注意函數(shù)奇偶性的區(qū)別①f(xRf(x在(0,+∞單調(diào)遞增若解不等式f(x1f(x2②f(xRf(x在(0,+∞單調(diào)遞減若解不等式f(x1f(x22模型1.對于fr(xgr(x)構(gòu)造h(xf(x2.對于不等式fr(xk(k≠0g(x=f(xkx3fr(xf(x0g(xex拓展對于不等式fr(xkf(x0g(xekx4對于不等式fr5.xfr
-f
00
==xf拓展對于不等式xfr(xnf(x0g(xxn6.xfr
-f
0
=f(x(x≠0拓展xfr
-nf
0
=00(2)若f(x)<0則構(gòu)造h(x)=ln[-0)模型9.對于fr(x)lnx+
0)10.(1fr(xf(x)tanx(fr(xf(x)tanx)fr(x)cosxf(x)sinx00),構(gòu)造h(xf(x)cosx.(2對于fr(x)cosxf(x)sinx00)h(xf(x)模型11.(1)fr(x)sinx+f(x)cosx(2)fr(x)sinx-
l題型 含一次函數(shù)結(jié)合(x)構(gòu) fr(xf(x(xRxR,fr(x1,f(32f(x>x-1的解集為 (-
(-
fr(xf(x(xRxR,fr(x2,f(23f(x>2x-1的解集為 (-
(-
(2425高三下·廣東深圳·月考f(xR上的奇函數(shù),f(20x0時有xfr(x+f(x>0成立則不等式f(x)>0的解集是 (-2,0)∪(2, C.(-∞,-2)∪ D.(2,(24-25高三下·河北邯鄲·月考)已知函數(shù)fr(x)是定義域?yàn)镽的奇函數(shù)f(x)的導(dǎo)函數(shù)當(dāng)x<0時,xfr(x)-f(x)>0且f(2)=4則不等式f(x)≤2x的解集為( A.[- B.(-∞,-2]∪[2,C.[-2,0]∪[2, D.[-2,0)∪[2,(2024·廣東佛山·一模fr(xf(x的導(dǎo)數(shù),f(1-xf(1x0,f(20當(dāng)x>1時,(x-1fr(x-f(x>0則使得f(x<0成立的x的取值范圍是 A.
B.
C.(-
D.(-
題型 含二次函數(shù)結(jié)合(x)構(gòu) 設(shè)函數(shù)f(x在R上存在導(dǎo)數(shù)fr(xxR有fr(xx若f(1k≥
-k則k的取值范圍是 (-
1(2324高三下·重慶·月考已知fr(x是函數(shù)f(x(xRxfr(x>2x,f(2=5則不等式f(x>x2+1的解集為 (-
(-
2(2024·山東聊城·三模f(xRfr(xx0時,fr12x+2的解集為 A.(- -1
1,1 -∞,-
已知函數(shù)f(x及其導(dǎo)數(shù)fr(xRx,f(x=f(-x
x10.不等式f(2x-
-f
<-
+3x的解集為 A.(- 2,+∞
2,2 -∞,2
題型 含冪函數(shù)結(jié)合(x)構(gòu) f(xRf(32x02f(xxfr(x則x2f(x<18的解集為 A.(-C.(-
B.(-D.(-∞,-
f(x(-∞,0),f(-11fr(xxfr(x2f(x)>0則不等式f(x+2025)+(x+2025)2<0的解集為 A.(-2026, B.(-∞,- C.(-∞,- D.(-2026,-R上的奇函數(shù)f
的導(dǎo)函數(shù)為fr
x0f
+xfr
則不等式x2f(x<(3x-1)2f(3x-1的解集為 (-∞,
∪(1
(1,
1(2324高三上·江西·月考f(xR上的奇函數(shù),fr(xx時,xfr(x+3f(x>0恒成立則不等式x3f(x+(2x-13f(1-2x<0的解集為 1C.(-
-∞,1
(2324高三上·江蘇蘇州·月考已知奇函數(shù)f(x(x≠0的導(dǎo)函數(shù)為fr(xf(-2=0.當(dāng)x>0時,3f(x>xfr(x則使得f(x>0成立的x的取值范圍為 A.(-∞,-C.(-∞,-
B.(-D.(-
(23-24高三上·湖南衡陽·月考)設(shè)函數(shù)fr(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)若f(x)-f(-x)=2x3且當(dāng)x≥0時,fr(x)>3x2則不等式f(x)-f(x+1)+3x2+3x+1>0 -∞,-
B.(-∞,-
-1
D.(-2,題型 含指數(shù)型函數(shù)結(jié)合(x)構(gòu) (2425高三下·黑龍江雞西·月考Rf(xfr(x且f(x+fr(x<0,f(ln2=1則不等式f(xex>2的解集為 A.(-
B.(-
C.
D.(2425高三下·內(nèi)蒙古赤峰·月考f(xRfr(x足fr(x>f(x且f(x+5為偶函數(shù),f(10=1則不等式f(x<ex的解集為 A.
B.(-
C.(-
D.(2324高三上·江西撫州·期中(-2,2f(xfr(xf(xe4xf(-x0,f(1e2x0時,fr(x2f(xe2xf(2-<e4的解集為 A.
B.(-
C.
D.2Rfr(x)等式f(x)<1+e-x的解集為( A.(- B.(0,C.(-∞,-1)∪(1, D.(-∞,-1)∪(2425高三下·重慶南岸·月考函數(shù)f(xR且f(xfr(xf(0=3則不等式f(x>2ex+1的解集為 A.(-
B.
C.(-
D.已知可導(dǎo)函數(shù)f
的導(dǎo)函數(shù)為fr
xR都有f
<fr +A.B.yf(x12024e2+x1f(xA.B. C.(- D.(-已知函數(shù)f
(0+∞
fr
>-f
ln2f(lnx<f(2的解集為
題型 含對數(shù)型函數(shù)結(jié)合(x)構(gòu) (2324高三上·江蘇揚(yáng)州·開學(xué)考試f(xRx0lnxfr(x
?f(x)<0則不等式(x-2)?f(x)>0的解集為 (-
(-
上的函數(shù)f
滿足xfr
x1f
=
f(ex>ex+x的解集為 A.
B.
C.
D.(2025·浙江·二模)已知函數(shù)f
為f
足fr
xlnx+f
x2
2a,bf
≥f(b-
a2 的最小值( b+A.22- B.
C. D.(2324高三下·遼寧·月考已知函數(shù)f
,fr
,xfr(x)-f
lnx+f
0則不等式f
<0的解集是
題型 含三角函數(shù)結(jié)合(x)構(gòu)(2324高三上·黑龍江齊齊哈爾·期末已知函數(shù)f
是fr2fπ
.xsinx的解集為
有fr
sinx-f
cosx0則關(guān)于x的不等式f(x
π,πR上的函數(shù)f(x)滿足f(xf(-x2sinx0x1x2f(x1+sinx1-f(x2-x1-
0f(x+
f(x)+sinx-cosx -∞,π
π
-∞,π
-π定義域?yàn)?-π, 的函數(shù)f(x)滿足f(x)+f(-x)=0其導(dǎo)函數(shù)為fr(x)當(dāng)0≤ <πfr(x)cosx+f(x)sinx0x的不等式f(x
fπcosx為 (-π,-
(-π
∪(0,
(-π
(2324高三上·廣東·月考f(xfr(x(-π,π且f(x為偶函數(shù),f( =-2,3f(xcosx+fr(xsinx>0則不等 fx+
cos3x-
0的解集為 (-π
(-2π,
(-2π 已知函數(shù)f(x及其導(dǎo)函數(shù)fr(x的定義域均為(ππf(x
≥f
tanx
2
< 的解集為 題型 其他類型構(gòu) (2324高三下·江蘇南通·月考f(xfr(x)f(1e0時,fr(x
ex則不等式f(x)-
<1的解集為 A.(0,1)∪(1,
C.
D.(2024·江蘇南通·模擬預(yù)測Ryf(xyfr(x若fr(x+(x+12也為偶函數(shù)且f(2a+4>f(a2+1則實(shí)數(shù)a的取值范圍是 A.(-∞,-C.(-
B.(-∞,-D.(-
已知函數(shù)f(x的定義域?yàn)?0,+∞fr(x(x+
2f
+xfr
xf
f
7f(x3
3x+12(x+3集為
(-
(-
(2324高三上·陜西安康·月考R上的連續(xù)函數(shù)f(x滿足f(x1x1時,(x-1fr(xf(x0其中fr(x是f(x的導(dǎo)數(shù).xe2xf(e2x+1≥(2x-af(2x+1-a恒成立則實(shí)數(shù)a的取值范圍為 (-∞,ln2-
ln2-
(-∞,-
-(2324高三上·重慶渝中·月考f(x(0,+∞fr
(x
2f
+xfr
xf
f
7f(x43x+(x+4
的解集為 (-
(-
(-檢 重難知識鞏 (2324高三上·湖北武漢·期中已知函數(shù)的定義域?yàn)镽,f(15對任意x(x)<2則f(x)>3+2x的解集為 A.(- B.(2, C. D.(-(2025·湖南·三模已知y=f(x是定義在(1,+∞=fr(x若xfr(x<f(x且f(3=6則不等式f(lnx>2lnx的解集為 A.
B.
C.
D.R上的函數(shù)f(x的導(dǎo)函數(shù)為fr(x)且滿足fr(xf(x),f(2024e2024不等式f(1lnx<3x的解集為 A.
B.
C.
D.(2024·寧夏銀川·三模)已知定義在R上的奇函數(shù)f(x)的圖象是一條連續(xù)不斷的曲線,fr(x是f(xx0時,3f(xxfr(x0且f(22則不等式(x1)3f(x+1)>16的解集為 A.(1, C.(- D.(-∞,-3∪(2425高三下·河北邢臺·月考f(xRf(11fr(x滿足fr(x-2f(x>0則不等式e2f(ln(x- <(x-12的解集為 A.
B.(1,e+
C.(e,e+
D.(e+fr
(2024·云南楚雄·一模f(xRxRf(x 1-
成立.若f(-1=-1則不等式f(x
的解集為 (-∞,-
(-
(-
(2324高三上·河北·月考已知函數(shù)f(x及其導(dǎo)函數(shù)fr(x+∞)且xfr(xx1)f(x恒成立,f(3e則不等式(x4)f(x43ex+2 A.(-4,- B.(- C.(- D.(-1,已知函數(shù)f(x)及其導(dǎo)函數(shù)fr(x)的定義域均為R且f(x)為偶函數(shù)f( =-3f(x)cosxfr(x)sinx0則不等式f(x+
cos3x-
0的解集為 A.(-B.(-A.(-π B.(-2π C.(-2πA.(-B.(- Rf(xfr(x,f(1exfr(xex C. D.設(shè)奇函數(shù)f(x的定義域?yàn)?ππf(xx -π
fr
cosx+f
sinx0若
f(m)<f
m)(-π,-
(0,
(-π,
(2324高三上·四川成都·月考Rf(xfr(x當(dāng)x≤0時滿足(x2+3fr(x+2xf(-x>0則不等式f(x≥f(2x+ 的解集為
x2+ 4(x2+x+
(-
(-∞,-
(2324高三下·上?!ぴ驴糵(xR且當(dāng)x<0時,2f(x+xfr(x)<0則不等式(x-20232f(x-2023)-f(-1)>0的解 (2425高三上·海南省直轄縣級單位·期中Rf(xf(220f(xfr(xfr(x6x22f(x2x32x(2025·山西·模擬預(yù)測f(xRfr(xfr(xf(x0e2x+2f(x2f(-x(2024·云南·模擬預(yù)測)已知fr(x是定義域?yàn)?0, 的函數(shù)f(x的導(dǎo)函數(shù)fr
sinx+f
cosx0則不等式f
sinx>1f
的解集 (2425高三下·廣東梅州·月考f(xRfr(x)xR有f(xf(-x2sinx且在[0上fr(xcosx.若fπ-t-f(tcostsint (2425高三上·廣東潮州·月考(0,+∞上的函數(shù)f(x的導(dǎo)函數(shù)為fr(x當(dāng)x>0時,xfr(x<2且f(e=5則不等式f(x2-4lnx<3的解集 (2425高三上·上?!て谥蠷f(xf(xfr(-xf
1f(x
1的解集 ex- (2425高三上·山東日照·月考f(xfr(x且F(x=ex+1f(x+1是偶函數(shù)其函數(shù)圖象為不間斷曲線且(x-1fr(x+f >0,不等式xf(lnx<e3f(3的解集 (2324高三下·北京·月考R上的函數(shù)f(x滿足f(2xf(-xx1xfr
fr
f
1則不等式f
的解集是x-(2024·河南·三模f(x(0,+∞,fr(xx(0,+∞,f(x>f(x-xfr lnx則不等式f(x(ex-1-1>0的解集 檢測 創(chuàng)新能力提 已知函數(shù)f
f
=e-1,fr
ex-2f(x>x2的解集為
(2223高二下·四川成都·月考f(x(0fr(x)fr2fx+2023的解集為
f
0(x+2023f(x+2023A.x|x>-C.x|-2023<x<0
B.x|x<-D.x|-2023<x<-(2024·四川德陽·三模f(xfr(xR(x-2fr(xf 0,f(4-xf(xe4-2xe3f(lnxxf(3 A.
B.
C.
D.Rf(xf(2xf(2-xx2xfr(xf
2fr
f
1則不等式f
< 的解集是( x-A.
(-
C.
D.(-
(2324高三下·河南南陽·月考已知函數(shù)f(xRfr(x),x滿足f(-xf(xcosx1x0時,fr(x1sinx0.若f(x+ +1sin(x+ ≥f(-x)則x的取值范圍 (2025·遼寧撫順·模擬預(yù)測f(xR,f(xfr(x3,f(14xxRxx時都有f(x1-f(x20lnf(x-3x
x1-的解集 (2425高三上·遼寧·期末Rf(xx0時,f(x且x>0時,e2x?fr(x-f <fr(x+f(x恒成立且f(1=e2-1則x≠0時不等f(x>e1+x-e1-x的解集 高考專題1把不等式轉(zhuǎn)化為f >f 判斷函數(shù)f(x“f”等式(組)但要注意函數(shù)奇偶性的區(qū)別①f
Rf
若解不等式f
f
②f
Rf
若解不等式f
f
2模型1.對于fr(xgr(x)構(gòu)造h(xf(x2對于不等式fr
=f
-kx+3對于不等式fr
0
=ex拓展對于不等式fr
+kf
0
=ekx4對于不等式fr5.xfr
-f
00
==xf拓展xfr
+nf
0
=xn6.xfr
-f
0
=f(x(x≠0拓展xfr
-nf
0
=7
00(2)若f(x)<0則構(gòu)造h(x)=ln[-0)模型9.對于fr(x)lnx+
0)10.(1fr(xf(x)tanx(fr(xf(x)tanx)fr(x)cosxf(x)sinx00),構(gòu)造h(xf(x)cosx.(2對于fr(x)cosxf(x)sinx00)h(xf(x)模型11.(1)fr(x)sinx+f(x)cosx(2)fr(x)sinx-
l題型 含一次函數(shù)結(jié)合(x)構(gòu) 已知fr
是函數(shù)f
(x∈
xR,fr
1,f
2f(x>x-1的解集為 (-
(-
=f
x1
的單調(diào)性可得答案
=f
x1因?yàn)閒
2
=f
-3+1=
=fr
1因?yàn)閒r
1所以gr
=f
x1因此由f
x-1?f
-x+1>0?
?x>已知fr
是函數(shù)f
(x∈
xR,fr
2,f
3f(x>2x-1的解集為 (-
(-
2x1可化為f
-2x+1>f
221
=f
2x+1
2x1可化為f
-2x+1>f
-2×2+
=f
2x+1則原不等式可化為
g(2
=fr
-因?yàn)閒r
2
x
=f
故不等式f
2x1的解集為(2,+∞(2425高三下·廣東深圳·月考f(xR上的奇函數(shù),f(20x0xfr
0成立則不等式f(x)>0的解集是 A.(-2,0)∪(2, C.(-∞,-2)∪ D.(2,解不等式
=xf
=xf
Fr
=xfr
x0xfr
x0時,F(xiàn)r(x0,F(xiàn)(x單調(diào)遞增;又因?yàn)閒(x是定義在R上的奇函數(shù),F(xiàn)(-xF(x是偶函數(shù),x0時,F(xiàn)(x是單調(diào)遞減函數(shù)
=-xf(-
=xf
=F(x又因?yàn)閒(20則f(-20,F(2F(-2F不等式f(x)>0等價 >0x0時,F(xiàn)(x0-2x所以不等式f(x0(-2,02.(24-25高三下·河北邯鄲·月考)已知函數(shù)fr(x)是定義域?yàn)镽的奇函數(shù)f(x)的導(dǎo)函數(shù)當(dāng)x<0時,xfr(x)-f(x)>0且f(2)=4則不等式f(x)≤2x的解集為( A.[- B.(-∞,-2]∪[2,C.[-2,0]∪[2, D.[-2,0)∪[2,F(x
F(x)在(-∞,0)上單調(diào)遞增.根據(jù)f(x)為R的奇函數(shù)得到F(x為RF(x的性質(zhì)可求f(x2x
Fr(x
xfr(x)- x0時,F(xiàn)r(x0F(x
在(-∞,0因?yàn)閒(x)F(xf
F(x在(0上單調(diào)遞減因?yàn)閒(2)=4所以F(2) =2故F(-2)=F(2)=x0f(x2xF(x
≥2=F(-2因?yàn)镕(x在(-∞,0-2xx0f(xRf(00滿足f(xx0f(x2xF(xF(x(0x2.綜上,f(x2x的解集為[-2,02.
≤2=F(25(2024·廣東佛山·一模fr
是函數(shù)f
的導(dǎo)數(shù),f(1-
+f(1+
0當(dāng)x1時,(x-
fr
f
0
<0成立的x的取值范圍是
(-
(-
=f(xg(xx-1
0f(1-xf(1x0g(1-xg(1xg(xg(x(-∞,10000f(x0f(x0x的取值范圍f
fr
(x-1-f
x-1g(x
(x- 0g(x在(1,+∞g(2f(2f(1-xf(1x0(1-x-1g(1-x(1x-1g(1x-xg(1-xxg(1x0g(1-xg(1xg(xx1g(x在(-∞,1g(0g(2x0時,g(x0f(x1x2時,g(x0f(x所以使得f(x0x的取值范圍是(-∞,0(1,2題型 含二次函數(shù)結(jié)合(x)構(gòu) 設(shè)函數(shù)f(x在R上存在導(dǎo)數(shù)fr(xxR有fr(xx若f(1k≥
k則k的取值范圍是 (-
1
=f
1x2g(1-kg(k
=f
x2
=fr
-x>g(xR由f(1-
f
≥
k得g(1-
0即g(1-
≥g(k
R1kkk1(xRx(xRx(2324高三下·重慶·月考fr(xffr(x2x,f(25則不等式f(xx21的解集為(-
(-
2
=f
x2
1不等式f
x2
=f
x2
=fr
-2x>
Rf
5
=f
-22=不等式f
x21即f
x21
x即不等式f
x21(2,+∞(2024·山東聊城·三模)設(shè)函數(shù)f
的定義域?yàn)镽導(dǎo)數(shù)為fr
2x-1且對于任意的實(shí)數(shù)x,f(-+2的解集為
=f
2xf(2x-
f
<3x2-A.(- -1
1,1 -∞,-
=f
x2xg(xRg(x在(0,+∞(-
f(2x-
f
3x25x2轉(zhuǎn)化為f(2x-1(2x-12+(2x-
<f=f
-x2+x即g(2x-
<
=f
-x2+則g(-
=f(-
x2-x=f
+2x-x2-x=即g(x為Rx0時,fr(x2xgr
=fr
2x10g(x在
(-
因?yàn)閒(2x-
f
<3x2-5x+所以f(2x-
-(2x-12+(2x-
<f
-x2+即g(2x-
<
2x-
x(2x-12
<x<從而求解不式
=f
x2x研究函數(shù)g(x已知函數(shù)f
及其導(dǎo)數(shù)fr
Rx,f
=f(-
-
x10.不等式f(2x-
f
<-
+3x的解集為
(-
22
-∞,2
=f
1x2x
f(xg(x即可得解
=f
1x2xgr
=fr
+x+x0時,fr(xx10g(x在(0,+∞由f
=f(-
2x
-1x2-x=g(-
-1x2+x-即g(xg(-xg(xg(x在(-∞,0則不等式f(2x-
f
<-
3x可化為:g(2x-
(2x-22-(2x-
+1x2+x<-3x2+ g(2x-2g(x2x-2x(2x-22(2x-2x(2x-2-x0(3x-2(x-2x(2,2
=f
1x2x
的單調(diào)性與對稱性題型 含冪函數(shù)結(jié)合(x)構(gòu) f(xRf(32x02f(xxfr(x則x2f(x<18的解集為 A.(-C.(-
B.(-D.(-∞,-
f(x)函數(shù)f(xg(xx2f(x在x0時,2f(xxfr(x0,2xf(xx2fr(x∴gr(x=2xf(x+x2fr(x>g(xx2f(x(0∵f(3)=x2f(x18x2f(x1832g(|x|)x0|x|x0(-3,3).已知函數(shù)f(x的定義域?yàn)?-∞,0),f(-11其導(dǎo)函數(shù)fr2f(x)>0則不等式f(x+2025)+(x+2025)2<0的解集為
滿足xfr(x)-A.(-2026, B.(-∞,- C.(-∞,- D.(-2026,-F(x
F(x2025F(-
0)
x(xfr(x)- 結(jié)合題干可知Fr(x)<0即F(x)在(-∞,0)0(x2025)20(x2025)2可得f(x(x+
<-1=f(-1)(-即F(x+2025)<F(-F(x(-∞,0上單調(diào)遞減和定義域可得:-1x20250,即-2026x<-2025,f(x2025(x2025)20(-2026-R上的奇函數(shù)f
的導(dǎo)函數(shù)為fr
x0f
+xfr
則不等式x2f(x<(3x-1)2f(3x-1的解集為 (-∞,
∪(1
(1,
1
x2f x2f
x2
g
=xf
+2f(x
+xfr x
x2f由題可知f
+2f
0g(x
y
x2f x2f(x3x1)2f(3x-1g(xg(3x-1x3x1x1(2324高三上·江西·月考f(xR上的奇函數(shù),fr(xx時,xfr(x+3f(x>0恒成立則不等式x3f(x+(2x-13f(1-2x<0的解集為 1C.(-
-∞,1
=x3f
【解析】令g(x=x3f(x則gr(x=3x2f(x+x3fr(x=x2xfr(x+3f x0時,gr(x0g(x(0,+∞因?yàn)閒(x為奇函數(shù)所以g(-x=(-x3f(-x=-x3?-f =x3f(x=g(x即g(x為偶函數(shù)所以原不等式變?yōu)間(x<g(2x-1所以g( <g(2x-1
2x-1x
x故原不等式的解集為(-∞, ∪(1,+∞(2324高三上·江蘇蘇州·月考已知奇函數(shù)f(x(x≠0的導(dǎo)函數(shù)為fr(xf(-2=0.當(dāng)x>0時,3f(x>xfr(x則使得f(x>0成立的x的取值范圍為 A.(-∞,-C.(-∞,-
B.(-D.(-
f f(-0F(-2F(20x0x0f
x3fr
-3x2f
xfr
-3f【解析】F(x
F(x
x0時,F(xiàn)rf
=xfr
-3f 0故F(x 在(0,+∞上單調(diào)遞減又f(x(x≠0為奇函數(shù),f(-20故f(2且F
f 定義域?yàn)?-
∪(0,+∞F(-
=f(-x=-f(x=f(x=F(x(-xf
-
fF(x
F(x
在(-
F(-
=F
=x0fx0f
0F0F
00x0故x<-故使得f
0成立的x的取值范圍為(-∞,-
∪(0,2(23-24高三上·湖南衡陽·月考)設(shè)函數(shù)fr(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)若f(x)-f(-x)=2x3且當(dāng)x≥0時,fr(x)>3x2則不等式f(x)-f(x+1)+3x2+3x+1>0 -∞,-
(-∞,-
-1
D.(-2,F(xf(xx3由題意判斷出F(x1)31)1|【解析】令F(x)=f(x可知F(x的定義域?yàn)镽且Fr(x)=fr(xf(xf(-x2x3f(xx3f(-x(-x3,F(xiàn)(x)3x2可知F(x在
對于不等式f(xf(x13x23x11)31|F(xf(xx3題型 含指數(shù)型函數(shù)結(jié)合(x)構(gòu) (2425高三下·黑龍江雞西·月考Rf(xfr(x且f(x+fr(x<0,f(ln2=1則不等式f(xex>2的解集為 (-
(-
F(xf(xexF(xF(xRF(ln22F(x的單調(diào)性可解函數(shù)不等式【解析】f(xfr(x0F(xf(x則Fr(x=fr(xex+f(xex=exf(x+fr <0故F(x在R上單調(diào)遞減F(ln2f(ln2eln22所以不等式f(xex2F(xF(ln2的解集為(-∞,ln2(2425高三下·內(nèi)蒙古赤峰·月考f(xRfr(x足fr(x>f(x且f(x+5為偶函數(shù),f(10=1則不等式f(x<ex的解集為
(-
(-
exf(x
f(101f(01g(01g(xg(0)利用單
fr(x)ex-
fr(x)-
g(x
0g(xRf(101f(x5f(-x5f(x5f(0f(101g(0
=于是f
1g(0)即不等式f(xex的解集為(-∞,0(2324高三上·江西撫州·期中(-2,2f(xfr(xf(xe4xf(-x0,f(1e2x0時,fr(x2f(xe2xf(2-<e4的解集為
(-
構(gòu)造函數(shù)
f e2xg(2-
<
g(x在(-
f(xf
+e4xf(-
+g(-
=f(x+f(-xf
+e4xf(-
=
fr(x-2f 又g(x
在(-
f(11e2xf(2-
<e4?f(2-x<1?g(2-e2(2-
<g(12-2-2Rfr(x)等式f(x)<1+e-x的解集為( (- B.(0,C.(-∞,-1)∪(1, D.(-∞,-1)∪g(xexf(xex1利用導(dǎo)數(shù)確定單調(diào)性并求解不等式【解析】g(xexf(xex1由f(02g(0f(02f(x1fr(x)gr(xexf(xfr(xexexf(xfr(x1g(xRf(x1e-xexf(x1exg(x0g(0),x0所以不等式f(x1e-x(-∞,0).(2425高三下·重慶南岸·月考函數(shù)f
R且f
<fr
f
3
2ex+1的解集為 (-
(-
f(x)-
fr(x)ex-(f(x)-
fr(x)-f(x)+對g(xg(x
已知f(xfr(x1即fr(xf(x10而ex0gr(x0恒成立這說明函數(shù)g(x在這說明函數(shù)g(x在R上單調(diào)遞增已知f(03g(0)=f(0)-1
=不等式f(x2ex1可變形為f(x12ex即f(x)-
2g(xg(xRx0.f(x2ex1(0+∞).已知可導(dǎo)函數(shù)f
的導(dǎo)函數(shù)為fr
xR都有f
<fr +yf(x12024e2+x1f(x2024e2x1
(-
(-g(x
f(x- f(1- 2024數(shù)不等式即可
xR都有f
<fr + 2fx-
-fr
<f(x-
fr
e2x-2e2xf(x-
fr
-2f(x-g(x
g(x
g(xRyf(x12024e2+x1所以f
2024e210f(1-
=-而不等式f
2024e2x1等價于f(x-
<-2014=f(1-1g(xg(1g(xRxf(x(0+∞fr(x>-f(xln2f(lnx<f(2的解集為
fr(x>-f(xln2和f(lnxf(2F(x2xf(x(x>0
【解析】F(x2xf(x(x>0因?yàn)閒r(x>-f(xln2即f(xln2fr(x則Fr(x=2xf(xln2+fr >0(x>0F(x在(0,+∞F(lnxF(22lnxf(lnx22f(2f(lnxf(20lnx2lne2,1x
f(lnxf(2(1,e2
題型 含對數(shù)型函數(shù)結(jié)合(x)構(gòu) (2324高三上·江蘇揚(yáng)州·開學(xué)考試f(xRx0lnxfr(x
?f(x)<0則不等式(x-2)?f(x)>0的解集為 (-
(-
F(xlnxf(x,x(0,+∞F(xlnxf(xxf(xR上的奇函數(shù)得到f(x0則Fr
=
f
+lnx?fr(xx0時,lnxfr(x
?f(x)<F(xlnxf(xx(0,+∞上單調(diào)遞減,F(xiàn)(1ln1f(1x1時,F(xiàn)(x0,lnx0,f(x0x1時,F(xiàn)(x0,lnx0,f(x又函數(shù)f(xx0時,f(x因?yàn)榭蓪?dǎo)函數(shù)f(xRf(0(x2f(x0x20xx(0,+∞(x2f(x0的解集為(0,2(0,+∞f(xxfr(xx1f(eln(ee+1f(ex>ex+x的解集為
g(x=f(xlnxxgr
=fr
-1-1
xfr
-x- xfr(x-x- 因?yàn)閤f(x>x+1所 >0即g
上恒成立
上單調(diào)遞增
=f
1e0
又f
ex+x?f
lnex-ex>0?
(2025·浙江·二模)已知函數(shù)f
為f
足fr
xlnx+f
x2
2a,bf
≥f(b-
a2 的最小值( b+A.22- B.
C. D.
x2
f(xx(lnxf(x
rxlnxf
=
+ln2f
=
Cln2·2C0f
所以fr
=4xlnx-(2lnx
=2x(2lnx-10在(2,+∞(2lnx2
f
又因?yàn)閒(a2
≥f(b-
a2b1即a2+ ≥b-1+2 =b+1+2 -2,b+
b+
b+tb1t4yt
2,t4所以t+2-2≥4+2-2=5所以a2+ ≥5當(dāng)且僅當(dāng)b=3時等號成立.
b+ (2324高三下·遼寧·月考已知函數(shù)f
,fr
,xfr(x)-f
lnx+f
0則不等式f
<0的解集是
=f(x lnx
而得到f(xf ? xfr
f
f
xfr
f lnx+fg(x
?lnx
?x
<g(x在(0,+∞f ?ln1=x1時,g(x00x1時,g(xx1時,g(x0x1時,g(x
=f=f
?lnx?lnx
0且0且
00所以f
<<當(dāng)x=1時因?yàn)閤fr(x-f lnx+f(x<0令x=1得f(1<0所以在(0,+∞f(x0題型 含三角函數(shù)結(jié)合(x)構(gòu)(2324高三上·黑龍江齊齊哈爾·期末已知函數(shù)f
是fr2fπ
.xsinx的解集為
有fr
sinx-f
cosx0則關(guān)于x的不等式f(x
π,πg(shù)(xsinx求解不等式即得
(0,π)
fr(x)sinx-
<
f(g(x(0,πf(x2f
sinx > , sing(xg
0x<π(0π28R上的函數(shù)f(x)滿足f(xf(-x2sinx0x1x2f(x1+sinx1-f(x2-x1-
0f(x+
f(x)+sinx-cosx -∞,π
π
-∞,π
-πg(shù)(xR0,+∞fx+
f(xsinxcosxg(x+
【解析】設(shè)g(xf(xsinx則g(-xf(-xsin(-由f(x)=f(-x2sinx得f(xsinx=f(-xsin(-x)所以g(xx00
<
f(x1+sinx1-f(x2-x1-
,+∞又g(xg(x在(-∞,0f(x+
+cosx=fx+
+sinx+
f(xsinxg(x
所以x+
xxπ定義域?yàn)?-π, 的函數(shù)f(x)滿足f(x)+f(-x)=0其導(dǎo)函數(shù)為fr(x)當(dāng)0≤ <πfr(x)cosx+f(x)sinx0x的不等式f(x
fπcosx為 (-π,-
(-π
∪(0,
(-π
g(xcosxg(xg(xgπ【解析】f(xf(-x0x(ππf(x
fr(x)cosx+ g(xcosx0x
<0則g(x)在 cos顯然函數(shù)g(x
g(x在(π
是遞減從而g(x)在(-π, 上 不等式f(x
fπcosx化為f(x)
f(cos
g(xg
π<x<π 所以不等式f(x) f(πcosx的解集為(π,π (2324高三上·廣東·月考f(xfr(x(-π,π且f(x為偶函數(shù),f( =-2,3f(xcosx+fr(xsinx>0則不等 fx+
cos3x-
0的解集為 (-π
(-2π,
(-2π
g(xf
sin3x,x(ππ 性解不等式【解析】g(xf(xsin3x,x(ππg(shù)r
=3f
sin2xcosx+fr
sin3x sin2x3f(xcosx+fr(xsinxx(ππsin2x03f(xcosxfr(xsinx 可知gr(x≥0且僅當(dāng)x=0時gr(x=0則g(x在(-π, 上單調(diào)遞增又因?yàn)閒
=fπ
=-g(
=f-
sin3-
=
=g-
-
<x<πg(shù)(x
=fx+
sin3x+
=fx+
f(x+
cos3x-
0g(x+
g-ππx+π<π2πx f(x+
cos3x-
0(2π,0g(xf(xsin3x,x(ππg(shù)(x 1利用誘導(dǎo)公式可得f(x+πcos3x-1>0等價于g(x+ >g(-π即可得結(jié)果 已知函數(shù)f(x及其導(dǎo)函數(shù)fr(x的定義域均為(ππf(x
≥f
tanx
2
< 的解集為 的單調(diào)性且是偶函數(shù)將問題轉(zhuǎn)化為F(x F 即可依據(jù)函數(shù)的單調(diào)性和奇偶性求解
≥f
tanx=f(xsinxfr(xcosxf(xsinxfr(xcosxf(x(cosx)r因此f(xcosxr≥0從而F(x=f(xcosx在(0, 上單調(diào)遞增又f(x是(-π, 上的偶函數(shù)且y=cosx是偶函數(shù) F(-xf(-xcos(-xf(xcos(xF(x即F(x是(-π, 上的偶函數(shù)故F(x在(-π,0上單調(diào)遞減
2
1又f
即f(x
cosx1即F
<所以F
<Fπ
F
<x<πx(ππ 題型 其他類型構(gòu) (2324高三下·江蘇南通·月考f(xfr(x)f(1e0時,fr(x
ex則不等式f(x)-
<1的解集為 A.(0,1)∪(1,
C.
D.ex0f(1e調(diào)性即可得解
0又f(x)-
1f(xlnxex0g(x
=f
ex
=fr
x0時,fr(x
ex
=fr
-ex<g(x在(0,+∞f(1eg(1f(1ln1e1eef(x)-
1f(xlnxex0
<
x(2024·江蘇南通·模擬預(yù)測Ryf(xyfr(x若fr(x+(x+12也為偶函數(shù)且f(2a+4>f(a2+1則實(shí)數(shù)a的取值范圍是 A.(-∞,-C.(-
B.(-∞,-D.(-
1)2f(-xf(x)-fr(-xfr(x),g(xfr(xx1)2,fr(x(x12則g(-xg(x)即fr(-xx1)2=fr(xx1)2,-fr(xx1)2fr(xx1)2,所以fr(xx0時,fr(x2x0f(x(0,+∞f(x(-∞,0由f(2a+4)>f(a2+1)即f(2a+ >f(a2+1所以2a4a21-(a212a4a21a<-1aa的取值范圍是(-∞,-1(3,+∞g(xfr(xx1)2從而推導(dǎo)出fr(x2x,已知函數(shù)f(x的定義域?yàn)?0,+∞fr(x(x+
2f
+xfr
xf
f
7f(x3
3x+12(x+3集為
(-
(-
x2f=x 為g(x
<
0xf(xx+1,
2f
+xfr
xf
?2f
+xfr(x
fr
x2fx+1
f
r=2xf
fr
f
r>x2f(x ?x+1x+1
f(xrx2f(x
x2f
x2f
r(x+
-x2fg(x
x1gr(x
(x+
>
x2f=x
3x+
(x+32f(x+因?yàn)閒
的定義域可知,x30f(x
<(x+32
x+ <又因?yàn)閒
7g(6
=62f =
x2f即上面不等式可轉(zhuǎn)化為g(x
<
g(x
x
0x36-3x(2324高三上·陜西安康·月考定義在R上的連續(xù)函數(shù)f
滿足f(x
x1時,(x-1fr(xf(x0其中fr(x是f(x的導(dǎo)數(shù).xe2xf(e2x+1≥(2x-af(2x+1-a恒成立則實(shí)數(shù)a的取值范圍為 (-∞,ln2-
ln2-
(-∞,-
-F(xxf(x1F(xa2xe2xxRg(x2xe2x的最大值可得【解析】F(xxf(x1Fr(xxfr(x1f(x1x0時,xfr(x1f(x10Fr(xF(x在(0,+∞F(xF(0因?yàn)閒(x1F(xF(xR上單調(diào)遞增e2xf(e2x1(2x-af(2x1-aF(e2xF(2x-ae2x2xaa2xe2xxR恒成立.令g(x2xgr(x22e2xgr(x0x0x0時,gr(x0,g(xx0時,gr(x0,g(xg(xx0g(xmaxg(0=-1a≥-1a-1,+∞(2324高三上·重慶渝中·月考f(x(0,+∞fr
(x
2f
+xfr
xf
f
7f(x43x+(x+4
的解集為 (-
(-
(-
x2f
【分析由已知有(xf >x+1構(gòu)造g(x=xf(x則x+1-g(x<0構(gòu)造G(x=g(x
(x+1-x+1則G(x (x+1 >0即G(x在(0,+∞上是單調(diào)遞增把目標(biāo)G(x4G(6
2f
+xfr
xf
f
r=2xf
fr
x2fx+1
-gr(x(x+
xf(xx1g(x
x+ <0,x∈(0,+∞x10g(xgr(x(x1
(x+1-
x1G
(x+1 >G(x在(0,+∞不等式f(x3x+不等式f(x3x+(x+42f(x+等價 x+ <3即G(x+g(x+4x+5<而G(6 =36f3G(x4G(6G(x在(0,+∞(x4<6g(xx2f(x
-grx+
(x+
0
=g(x判斷單調(diào)性為關(guān)鍵x+檢 重難知識鞏 (2324高三上·湖北武漢·期中已知函數(shù)的定義域?yàn)镽,f(15對任意x(x)<2則f(x)>3+2x的解集為 A.(- B.(2, C. D.(-構(gòu)造函數(shù)g(x=f(x2x3利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可求解【解析】設(shè)g(x=f(x2x3則gr(x=fr(xxR,gr(x0,g(xR∵f(1)=5,∴g(1=f(1)-2-3=g(xg(10x∴f(x32x(-∞,1).(2025·湖南·三模已知y=f
=fr(x若xfr(x<f(x且f(3=6則不等式f(lnx>2lnx的解集為
f
1lnx3即可求解f
xfr
-f
g(x
xfr(xf(xxfr(xf(x0gr(xf則g(x (x>1在區(qū)間(1,+∞上單調(diào)遞減f(lnx>2=f又f
6
2lnx
lnx>1
1lnxexR上的函數(shù)f(x的導(dǎo)函數(shù)為fr(x)且滿足fr(xf(x),f(2024e2024不等式f(1lnx<3x的解集為
D.D.F(x
【解析】F(xf(x)fr(xf(x則Fr(x
fr(x)ex-f(x)ex
fr(x)-
所以函數(shù)F(x)在R
f(1 可轉(zhuǎn)化 F(2024可轉(zhuǎn)化
1不等式f
<3 e1 e
1lnx20240xe6072f(1lnx3x(0,e6072 (2024·寧夏銀川·三模)已知定義在R上的奇函數(shù)f(x)的圖象是一條連續(xù)不斷的曲線,fr(x是f(xx0時,3f(xxfr(x0且f(22則不等式(x1)3f(x+1)>16的解集為 A.(1, C.(- D.(-∞,-3∪(x1)3f(x116g(xx3f(xx0g(xx3f【解析】令g(x=x3f(x則gr(x=3x2f(x+x3fr(x=x23f(x+xfr x0時,3f(xxfr(x0g(x(0,+∞又f(xg(x(x13f(x123f(2x12x<-3x1.(2425高三下·河北邢臺·月考f(xRf(11fr(x滿足fr(x-2f(x>0則不等式e2f(ln(x- <(x-12的解集為 A.
B.(1,e+
C.(e,e+
D.(e+
f(xg(xe2f(ln(x-1<(x-12g(x的單調(diào)性即可求解f
fr
-2f
e2xg(x
0
在R又不等式e2f(ln(x- <(x-12等價于f(ln(x- <1,(x-1 即g(ln(x- =f(ln(x- =f(ln(x-1 =f(ln(x-1 <1=f(1=g(1,e2ln(x-
eln(x-1
(x-1
ln(x-11(x-1>0x(1,efr
(2024·云南楚雄·一模f(xRxRf(x 1-
成立.若f(-1=-1則不等式f(x
的解集為 (-∞,-
(-
(-
g(x3xf(xg(xg(xg(1fr >0得f(x+f(xln3>令g(x=3xf(x則gr(x=3x(ln3?f(x+fr >g(xR又f(-1=-1,f(xf(11,g(13f(1f(x31-x3xf(x3g(xg(1x(2324高三上·河北·月考已知函數(shù)f(x及其導(dǎo)函數(shù)fr(x+∞)且xfr(xx1)f(x恒成立,f(3e則不等式(x4)f(x43ex+2 A.(-4,- B.(- C.(- D.(-1,
,x01)f(x)g(x
,x0gr(x
xfr(x)+f(x)-
0g(x(0又(x4)f(x43ex+2得(x4)f(x0x43-4x<-1.
<3f(3)g(x4g(x
,x0(x4)f(x43ex+2g(x4g(3)利用單調(diào)性解即可已知函數(shù)f(x)及其導(dǎo)函數(shù)fr(x)的定義域均為R且f(x)為偶函數(shù)f( =-3f(x)cosxfr(x)sinx0則不等式f(x+
cos3x-
0的解集為 A.(-π B.(-2π
C.(-2π, D.(π
結(jié)合函數(shù)的單調(diào)性及一元一次不等式的解法即可求解則gr(x)=3f(x)sin2xcosx+fr(x)sin3x=sin2x3f(x)cosx所以g(x在R上單調(diào)遞增
0gr(x又因?yàn)閒(xf(-
=fπ
=-g(
=-1
3f-
=1g(x
=fx+
sin3x+
=fx+
f(x+
cos3x-
0g(x+
g-πxππx2π f(x+
cos3x-
0(2π,+∞Rf(xfr(x,f(1exfr(xex (-
(-
=f(x xF(1
=f 10x1時,F(xiàn)(x0從而求出解集f【解析】F(x
-因?yàn)閒r
f
<
fr
f(x-F(xfF(xfr(x-f -1故F
=f xRf又f(1=e故F(1 -1=0f
xex?f(x-x>0?F
f(xxex(-∞,1設(shè)奇函數(shù)f(x的定義域?yàn)?ππf(xx -π
fr
cosx+f
sinx0若
f(m)<f
m)(-π,-
(0,
(-π, D.(π,
=f(x
yg(x間(π,0g(x
<gπ
y
的單調(diào)性可解出所求不等式【解析】g(xf(x(ππ
f(-
f因?yàn)楹瘮?shù)y=f(x為奇函數(shù)所以g(-x=cos(- =-cosx=-g(x則函數(shù)g(x=f(x是定義在(-π, 上的奇函數(shù)
=fr
cosx+f
x(π,0fr(xcosxf(xsinxx(π,0時,gr(x0g(xf(xx(π,0 則函數(shù)g(x=f(x是(-π, 上的奇函數(shù)并且單調(diào)遞增
f(m)<f
cos(-m)=f
m<πcosmf
f(cos
<gπm<ππm<ππm<π (2324高三上·四川成都·月考Rf(xfr(x當(dāng)x≤0時滿足(x2+3fr(x+2xf(-x>0則不等式f(x≥f(2x+ 的解集為
x2+ 4(x2+x+
(-
(-∞,-
=f(x g(xx23
R在(-∞,0Rf
x2+因?yàn)閒(x是定義在Rf(-x=-f(xf(- fg(-x=x23x23=-g(xg(xRx0時,(x23fr(x2xf(-x0(x23fr(x2xf(x (x2+3fr(x-2xfg(x
(x2+3 >g(x在(-∞,0g(xRg(xRf f(2x+
f(2x+則不等 x2+ 4(x2+x+
=(2x+12+3g(xg(2x1x2x1x≤-f f(2x+所以不等 x2+ 4(x2+x+
的解集為(-∞,-1(2324高三下·上?!ぴ驴糵(xR(x)
xfr(x0(x-20232f(x2023f(-10F(xx2f(xF(x(-∞,0(0,+∞(x-20232f(x2023f(-10F(x-2023F(-【解析】令F(xx2f(xFr(x2xf(xx2fr(xx2f(xxfr(x)x0時,2f(xxfr(xx0時,F(xiàn)r(xx2f(xxfr(x)F(x在(-∞,0f(xR所以f(-xf(xF(-xx)2f(-xx2f(xF(xF(x在(0,+∞所以F(x-2023)=(x-2023)2f(x-2023),F(-1)=(-1)2f(-1)=f(-F(x-2023F(-1所以x-202312022x(2425高三上·海南省直轄縣級單位·期中Rf(xf(220f(xfr(xfr(x6x22f(x2x32xg(xf(x2x32xg(xRg(20g(xg(22xg(xRg(2f(22232220164g(xg(2x所以不等式f(x2x32x的解集為(2,+∞(2025·山西·模擬預(yù)測f(xRfr(xfr(xf(x<0則不等式e2x+2f(x+2<f(-x的解集 g(xexf(x利用函數(shù)的單調(diào)性解不等式即可【解析】設(shè)g(x=exf(x,則gr(x=exfr(x+f <g(xRe2x+2f(x2f(-xex+2f(x2e-xf(-xg(x2g(-x故x2>-xx>-e2x+2f(x2f(-x(-1,+∞故答案為:(-(2024·云南·模擬預(yù)測)已知fr(x是定義域?yàn)?0, 的函數(shù)f(x的導(dǎo)函數(shù)fr
sinx+f
cosx0則不等式f
sinx>1f
的解集
=f
sinx
gπ
x<πf
sinx>1f
的解集
=f
sinx,x∈0,
=fr
sinx+f
cosx<
f
sinx>1f
?fx<
sinx>f
sinπ即g(x>g( 得 π0<x<0x<π(0π (2425高三下·廣東梅州·月考f(xRfr(x)xR有f(xf(-x2sinx且在[0上fr(xcosx.若fπ-t-f(tcostsint g(xf(xsinx【解析】令g(xf(xsinx由f(xf(-x得g(x)-g(-x)=f(x)-sinxf(-x)+sinx]=0函數(shù)g(x)cosx0fπ-
sint
+sinπ-
[g(t)+sint]>cost-故答案為:g(t)g(|t|)|t|故答案為:πt(π(2425高三上·廣東潮州·月考(0,+∞上的函數(shù)f(x的導(dǎo)函數(shù)為fr(x當(dāng)x>0時,xfr(x<2且f(e=5則不等式f(x2-4lnx<3的解集 g(xf(x24lnx3
=f
4lnx-
x2fr(x2-則 =f(e-4lne-3=5-2-3=0,g(x=2xf -x= x0時,xfr(xgr(x0g(x在(0,+∞g(xf(x24lnx3則g(x< 所以x ef(x24lnx3(e,+∞故答案為:(e,+∞(2425高三上·上?!て谥蠷f(xf(xfr(-xf
1f(x
1的解集 ex- 【解析】因?yàn)閒(x是定義在Rf(-xfr(-xfr(x).已知f(xfr(-x0可得f(xfr(x令g(xex-2f(x),gr(xex-2f(xex-2fr(xex-2f(x由于f(xfr(x0又ex-20所以gr(x0這表明g(x在R上單調(diào)遞增不等式f(x11ex-1f(x1ex-f(2)g(xx12x1.故不等式f(x11(1ex-(2425高三上·山東日照·月考f(xfr(x且F(x=ex+1f(x+1是偶函數(shù)其函數(shù)圖象為不間斷曲線且(x-1fr(x+f >0,不等式xf(lnx<e3f(3的解集 F(x所以Fr(x=ex+1f(x+1+ex+1fr(x+1=ex+1f(x+1+fr(x+ 又因?yàn)?x-1f(x+fr >0用x+1代替x得:xf(x+1+fr(x+ >所以當(dāng)x>0時,f(x+1+fr(x+1>0所以ex+1f(x+1+fr(x+ >F(x在(0,+∞上單調(diào)遞增F(xy(-∞,0上單調(diào)遞減lnxt1xet+1xf(lnxet+1f(t1F(te3f(3e2+1f(21F(2xf(lnxe3f(3F(tF(2(-∞,0(0,+∞t2?-2t-1lnxt13
<x<xf(lnxe3f(3的解集為(1,e3函數(shù)不等式轉(zhuǎn)化為代數(shù)不等式求解(2324高三下·北京·月考R上的函數(shù)f(x滿足f(2xf(-xx1xfr
fr
f
1則不等式f
的解集是x-【分析依據(jù)題意判斷函數(shù)f(x關(guān)于直線x=1對稱結(jié)合(x-1f =(x-1fr(xf(x0構(gòu)造函數(shù)g(xx1)f(x)易得其關(guān)于(1,0【解析】R上的函數(shù)f(x滿足f(2xf(-所以函數(shù)f(xx1f(x1f(1x),x因?yàn)楫?dāng)x>1時,有xfr(x)+f(x)>fr(x),即[(x-1)f(x)]=(x-1)fr(x)+f(x)>故令g(xx1)f(x則g(xx1)f(x)在(1上單調(diào)遞增,g(1xg(1xxf(1xxf(1x0,所以g(xx1)f(x關(guān)于點(diǎn)(1,0所以g(xx1)f(x在Rf(2g(221)f(21x1時,f(xxx1)f(x1g(x11x2x1時,f(xxx1)f(x1g(x1所以x<1且x>2,即無解.所以不等式f(x)< 的解集是(1,2.x-[(x1)f(xx1)fr(xf(x0g(xx1)f(x)(2024·河南·三模f(x(0,+∞,fr(xx(0,+∞,f(x>f(x-xfr lnx則不等式f(x(ex-1-1>0的解集
=f
?lnx
0與
0f
?lnx
=f
?lnx
=fr
?lnx
?1-lnx
=f
f
-xfr(x
g(x在(0,+∞ex-110x1ex-110x而
0?x>
<0?0<x<
f
(ex-1-
0f
?lnx
g(x0g(10g(xg(1x(1,+∞檢測 創(chuàng)新能力提 已知函數(shù)f
f
=e-1,fr
ex-2f(x>x2的解集為
ex1x2g
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 成人護(hù)理的區(qū)別與聯(lián)系
- 2025年醫(yī)療建筑工程項(xiàng)目合作計劃書
- 原料藥生產(chǎn)試題及答案
- 企業(yè)數(shù)據(jù)資源規(guī)劃及利用效率提升
- 開展多樣化員工培訓(xùn)課程活動
- 醫(yī)院血管導(dǎo)管相關(guān)感染預(yù)防與控制制度
- 環(huán)保知識競賽題庫附答案
- 精神科護(hù)理員工作職責(zé)
- 2025最權(quán)威合同租賃合同范本參考
- 2025年勞動保障法律法規(guī)知識競賽試題及答案
- 光源與照明工程師月工作總結(jié)
- 《腰椎病的推拿療法》課件
- 《T-ZGYSYJH 004-2022 產(chǎn)褥期婦女食養(yǎng)藥膳技術(shù)指南》
- 軟件開發(fā)實(shí)施及方案
- 礦山隱蔽致災(zāi)普查治理報告
- 玻璃體切割手術(shù)治療2型糖尿病視網(wǎng)膜病變專家共識
- 2024年教師招聘考試教育綜合理論知識復(fù)習(xí)題庫及答案(共550題)
- 汽車租賃操作規(guī)程及駕駛員安全培訓(xùn)考核
- 新視野大學(xué)英語(第四版)讀寫教程3(思政智慧版)課件 B3U5 Chinas space dream Section C
- 屋頂光伏施工進(jìn)度計劃
- 全國中小學(xué)“學(xué)憲法、講憲法”知識素養(yǎng)競賽題庫及答案
評論
0/150
提交評論