基礎(chǔ)強化京改版數(shù)學9年級上冊期末測試卷附答案詳解(基礎(chǔ)題)_第1頁
基礎(chǔ)強化京改版數(shù)學9年級上冊期末測試卷附答案詳解(基礎(chǔ)題)_第2頁
基礎(chǔ)強化京改版數(shù)學9年級上冊期末測試卷附答案詳解(基礎(chǔ)題)_第3頁
基礎(chǔ)強化京改版數(shù)學9年級上冊期末測試卷附答案詳解(基礎(chǔ)題)_第4頁
基礎(chǔ)強化京改版數(shù)學9年級上冊期末測試卷附答案詳解(基礎(chǔ)題)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、古希臘數(shù)學家歐多克索斯在深入研究比例理論時,提出了分線段的“中末比”問題:點G將一線段分為兩線段,,使得其中較長的一段是全長與較短的段的比例中項,即滿足,后人把這個數(shù)稱為“黃金分割”數(shù),把點G稱為線段的“黃金分割”點.如圖,在中,已知,,若D,E是邊的兩個“黃金分割”點,則的面積為(

)A. B. C. D.2、當0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,43、如圖,ABC是等邊三角形,點D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長等于()A.1 B. C. D.24、如圖,點A與點B關(guān)于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數(shù)()的圖象經(jīng)過點A,E.若△ACE的面積為6,則的值為(

)A. B. C. D.5、記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關(guān)于x的二次函數(shù).已知當商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則y與x的函數(shù)關(guān)系式是(

)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20006、已知點在半徑為8的外,則(

)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、下列用尺規(guī)等分圓周的說法中,正確的是(

)A.在圓上依次截取等于半徑的弦,就可以六等分圓B.作相互垂直的兩條直徑,就可以四等分圓C.按A的方法將圓六等分,六個等分點中三個不相鄰的點三等分圓D.按B的方法將圓四等分,再平分四條弧,就可以八等分圓周2、下表時二次函數(shù)y=ax2+bx+c的x,y的部分對應(yīng)值:…………則對于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實數(shù)根分別位于﹣<x<0和2<x<之間D.當x>0時,函數(shù)值y隨x的增大而增大3、下列說法中,正確的是(

)A.兩角對應(yīng)相等的兩個三角形相似B.兩邊對應(yīng)成比例的兩個三角形相似C.兩邊對應(yīng)成比例且夾角相等的兩個三角形相似D.三邊對應(yīng)成比例的兩個三角形相似4、已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.下列說法正確的是(

)A.函數(shù)解析式為I= B.當R=9Ω時,I=4AC.蓄電池的電壓是13V D.當I≤10A時,R≥3.6Ω5、季是呼吸道疾病多發(fā)的季節(jié),為預(yù)防病毒的傳播,某學校用藥熏消毒法對教室進行消毒,已知藥物釋放過程中,教室內(nèi)每立方米空氣中含藥量與時間成正比例;藥物釋放完畢后,y與t成反比例,如圖所示.空氣中的含藥量低于時對身體無害.則下列選項正確的是(

)A.藥物釋放過程中,y與t的函數(shù)表達式是B.藥物的釋放過程需要2hC.從開始消毒,6h后空氣中的含藥量低于D.空氣中含藥量不低于的時長為6h6、如圖是拋物線的一部分,拋物線的頂點坐標是A(1,3),與x軸的一個交點是B(4,0),點P在拋物線上,且在直線AB上方,則下列結(jié)論正確的是(

)A. B.方程有兩個相等的實根C. D.點P到直線AB的最大距離7、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(

)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,已知是⊙O的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.2、二次函數(shù)的部分圖象如圖所示,由圖象可知,方程的解為___________________;不等式的解集為___________________.3、二次函數(shù)的最大值是__________.4、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.5、如圖,點O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點,連接EF,已知,.(1)以點E,O,F(xiàn),D為頂點的圖形的面積為_________;(2)線段EF的最小值是_________.6、已知=,則=________.7、如圖,在RT△ABC中,,點D是的中點,過點D作,垂足為點E,連接,若,,則________.四、解答題(6小題,每小題10分,共計60分)1、已知有三條長度分別為2cm、4cm、8cm的線段,請再添一條線段.使這四條線段成比例,求所添線段的長度.2、如圖,已知二次函數(shù)的圖象經(jīng)過點.(1)求的值和圖象的頂點坐標.

(2)點在該二次函數(shù)圖象上.

①當時,求的值;②若到軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍.3、(1)計算:.(2)解方程:.4、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點A(2,6)和B(4,4),直線l經(jīng)過點B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O(shè),Q,R為頂點的三角形相似,請直接寫出點R的縱坐標;(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點為N,且點N的縱坐標是﹣1.求:①tan∠DCG的值;②點C的坐標.5、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.6、某商品的進價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件,如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設(shè)每件商品的售價x元(x為整數(shù)),每個月的銷售量為y件.(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;(2)設(shè)每月的銷售利潤為W,請直接寫出W與x的函數(shù)關(guān)系式.-參考答案-一、單選題1、A【解析】【分析】作AF⊥BC,根據(jù)等腰三角形ABC的性質(zhì)求出AF的長,再根據(jù)黃金分割點的定義求出BE、CD的長度,得到中DE的長,利用三角形面積公式即可解題.【詳解】解:過點A作AF⊥BC,∵AB=AC,∴BF=BC=2,在Rt,AF=,∵D是邊的兩個“黃金分割”點,∴即,解得CD=,同理BE=,∵CE=BC-BE=4-(-2)=6-,∴DE=CD-CE=4-8,∴S△ABC===,故選:A.【考點】本題考查了“黃金分割比”的定義、等腰三角形的性質(zhì)、勾股定理的應(yīng)用以及三角形的面積公式,求出DE和AF的長是解題的關(guān)鍵。2、A【解析】【分析】利用配方法把原方程化為頂點式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點式是解答本題的關(guān)鍵.3、D【解析】【分析】通過△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點】本題考查了三角形的相似,做題的關(guān)鍵是△ABD∽△DCE.4、C【解析】【分析】過A作,連接OC、OE,根據(jù)點A與點B關(guān)于原點對稱,∠ACB=90°,AC平分∠BAD得出,從而得出三角形AEC的面積與三角形AOE的面積相等,設(shè),根據(jù)E是AD的中點得出得出三角形OAE的面積等于四邊形AFGE的面積建立等量關(guān)系求解.【詳解】解:過A作,連接OC,連接OE:∵點A與點B關(guān)于原點對稱,∠ACB=90°∴又∵AC平分∠BAD∴∴∴設(shè),根據(jù)E是AD的中點得出:∴解得:故答案選:C.【考點】本題考查反比例函數(shù)與幾何綜合,有一定的難度.將三角形AEC的面積轉(zhuǎn)化與三角形AOE的面積相等是解題關(guān)鍵.5、D【解析】【分析】設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,根據(jù)題意列方程組即可得到結(jié)論.【詳解】解:設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,∵當x=55,y=1800,當x=75,y=1800,當x=80時,y=1550,∴,解得a=?2,b=260,c=?6450,∴y與x的函數(shù)關(guān)系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故選:D.【考點】本題考查了根據(jù)實際問題列二次函數(shù)關(guān)系式,正確的列方程組是解題的關(guān)鍵.6、A【解析】【分析】根據(jù)點P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點與圓的位置關(guān)系的方法.二、多選題1、ABCD【解析】【分析】由圓心角、弧、弦的關(guān)系定理得出ABCD正確,即可得出結(jié)論.【詳解】解:根據(jù)圓心角、弧、弦的關(guān)系定理得:在圓上依次截取等于半徑的弦,六條弧相等,就可以六等分圓,∴A正確;∵相互垂直的兩條直徑得出4個相等的圓心角是直角,∴4條弧相等,∴B正確;在圓上依次截取等于半徑的弦,六條弧相等,六個等分點中三個不相鄰的點三等分圓,∴C正確;∵相互垂直的兩條直徑得出4個相等的圓心角是直角,再平分四條弧,就可以八等分圓周,∴D正確;故選:ABCD.【考點】本題考查了正多邊形和圓、圓心角、弧、弦的關(guān)系定理;熟練掌握圓心角、弧、弦的關(guān)系定理,由題意得出相等的弧是解題的關(guān)鍵.2、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當x=0時,y=-1;當x=2時,y=-1;當x=,y=;當x=,y=;∴二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實數(shù)根分別位于-<x<0和2<x<之間;所以選項B,C正確,故選:BC.【考點】本題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.3、ACD【解析】【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】A

“兩角對應(yīng)相等的兩個三角形相似”是正確的;B

“兩邊對應(yīng)成比例的兩個三角形相似”是錯誤的,還需添上條件“且夾角相等”才成立;C

“兩邊對應(yīng)成比例且夾角相等的兩個三角形相似”是正確的;D

“三邊對應(yīng)成比例的兩個三角形相似”是正確的故選:ACD【考點】本題考查了相似三角形的判定定理,做題的關(guān)鍵是熟練掌握相似三角形的判定定理.4、BD【解析】【分析】設(shè)函數(shù)解析式為,將點(4,9)代入判斷A錯誤;將R=9Ω代入判斷B正確;由解析式判斷C錯誤;由函數(shù)性質(zhì)判斷D正確.【詳解】解:設(shè)函數(shù)解析式為,將點(4,9)代入,得,∴函數(shù)解析式為,故A錯誤;當R=9Ω時,I=4A,故B正確;蓄電池的電壓是36V,故C錯誤;∵39>0,∴I隨R的增大而減小,∴當I≤10A時,R≥3.6Ω,故D正確;故選:BD.【考點】此題考查了求反比例函數(shù)解析式,反比例函數(shù)的增減性,已知自變量求函數(shù)值的大小,正確掌握反比例函數(shù)的綜合知識是解題的關(guān)鍵.5、AC【解析】【分析】根據(jù)題意及圖象先確定反比例函數(shù)解析式及正比例函數(shù)解析式,然后根據(jù)題意對各選項進行判斷即可.【詳解】解:A、藥物釋放完畢后,y與t成反比例,設(shè),由圖象可得經(jīng)過點,∴k=3×,∴,當y=1時,t=,∴正比例函數(shù)經(jīng)過點,設(shè)正比例函數(shù)解析式為y=at,將點代入求得:a=,∴正比例函數(shù)解析式為y=t,故A正確;B、由A選項可得,當t=時,y達到最大為1,故B錯誤;C、當t=6時,代入反比例函數(shù)可得:,∴6h后空氣中的含藥量低于0.25mg/m3,故C正確;D、根據(jù)圖象及C選項可得:空氣中含藥量不低于0.25mg/m3的時長小于6h,故D錯誤;故選:AC.【考點】題目主要考查一次函數(shù)與反比例函數(shù)的綜合應(yīng)用,理解題意,確定出一次函數(shù)與反比例函數(shù)解析式是解題關(guān)鍵.6、BCD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、坐標系內(nèi)直線的平移、利用配方法求二次三項式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項錯誤;由圖象可知,直線與拋物線只有一個交點,則方程有兩個相等的實根,故B選項正確;當時,拋物線由最大值,則,即,故C選項正確;設(shè)直線AB的表達式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對稱軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個交點時至,要求點P到直線AB的最大距離,即點P為直線與拋物線的交點,過點作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質(zhì)可設(shè)直線的表達式為,當與拋物線有一個交點時,即,整理得,由于只有一個交點,則,解得,即直線AB向上平移了:,則,則,點P到直線AB的最大距離,故D選項正確,故選BCD.【考點】本題考查了二次函數(shù)的圖象及性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、平面直角坐標系內(nèi)直線的平移,解題的關(guān)鍵學會利用函數(shù)圖象解決問題,靈活運用相關(guān)知識解決問題,本題難點在于要求拋物線上的點到直線的最大距離即求直線平移至與拋物線有一個交點時交點到直線的距離.7、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應(yīng)邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關(guān)鍵.三、填空題1、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關(guān)知識點,本題的關(guān)鍵是求出∠COB=60°.2、

,

或【解析】【分析】根據(jù)拋物線的對稱軸和拋物線與x軸一個交點求出另一個交點,再通過二次函數(shù)與方程的兩根,二次函數(shù)與不等式解集的關(guān)系求得答案.【詳解】∵拋物線的對稱軸為,拋物線與x軸一個交點為(5,0)∴拋物線與x軸另一個交點為(-1,0)∴方程的解為:,由圖像可知,不等式的解集為:或.故答案為:,;或.【考點】本題考查了二次函數(shù)的圖像性質(zhì),掌握二次函數(shù)與方程的兩根,二次函數(shù)與不等式的解集關(guān)系,是解決問題的關(guān)鍵.3、8【解析】【分析】二次函數(shù)的頂點式在x=h時有最值,a>0時有最小值,a<0時有最大值,題中函數(shù),故其在時有最大值.【詳解】解:∵,∴有最大值,當時,有最大值8.故答案為8.【考點】本題考查了二次函數(shù)頂點式求最值,熟練掌握二次函數(shù)的表達式及最值的確定方法是解題的關(guān)鍵.4、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.5、

1

【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當時,EF有最小值,故答案為:.【考點】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.6、【解析】【分析】利用比例的性質(zhì)進行變形,然后代入代數(shù)式中合并約分即可.【詳解】解:∵,∴,則.故答案為:.【考點】本題考查比例問題,關(guān)鍵掌握比例的性質(zhì),會利用性質(zhì)把比例式進行恒等變形,會根據(jù)需要選擇靈活的比例式解決問題.7、3【解析】【分析】根據(jù)直角三角形的性質(zhì)得到AB=10,利用勾股定理求出AC,再說明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點D為AB中點,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點】本題考查了直角三角形的性質(zhì),勾股定理,平行線分線段成比例,解題的關(guān)鍵是通過平行得到比例式.四、解答題1、1或4或16.【解析】【分析】根據(jù)成比例線段的性質(zhì)求解即可.【詳解】解:設(shè)添加的線段長度為x,當時,解得:;當時,解得:;當時,解得:.∴所添線段的長度為1或4或16.【考點】此題考查了線段成比例,解題的關(guān)鍵是熟練掌握線段成比例性質(zhì)并分類討論.2、(1);(2)①11;②.【解析】【分析】(1)把點P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由點Q到y(tǒng)軸的距離小于2,可得-2<m<2,在此范圍內(nèi)求n即可.【詳解】(1)解:把代入,得,解得.∵,∴頂點坐標為.(2)①當m=2時,n=11,②點Q到y(tǒng)軸的距離小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.【考點】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)圖象上點的特征是解題的關(guān)鍵.3、(1)10;(2)無解.【解析】【分析】(1)原式利用絕對值的代數(shù)意義,特殊角三角函數(shù)值,二次根式性質(zhì),負整數(shù)指數(shù)冪法則計算即可求出值;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】解:(1)原式;(2)去分母得:2+1?x=2x?6,解得:x=3,經(jīng)檢驗x=3是增根,分式方程無解.【考點】此題考查了解分式方程以及實數(shù)的運算,熟記特殊角三角函數(shù)值,實數(shù)的運算法則以及分式方程的解法是解本題的關(guān)鍵.4、(1)y=﹣;(2)點R的縱坐標為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點C坐標為(﹣1,3).【解析】【分析】(1)將點A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設(shè)點R的縱坐標為n,則QN=|n|,分兩種情況,根據(jù)相似關(guān)系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點C在拋物線上,設(shè)其橫坐標為m,然后用其分別表示出相關(guān)點的坐標,并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對應(yīng)邊上的高之比也等于相似比,從而建立關(guān)于m的方程,解之,然后代回點C即可.【詳解】(1)將點A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函數(shù)的表達式為y=.(2)∵A(2,6),AK⊥x軸,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,設(shè)點R的縱坐標為n,則QN=|n|,如果△AOK與以O(shè),Q,R為頂點的三角形相似,有兩種情況:①,則n=±12;②,則,從而n=±.答:點R的縱坐標為,12,﹣1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論