2024年吉林省洮南市中考數(shù)學(xué)全真模擬模擬題及參考答案詳解(培優(yōu)B卷)_第1頁
2024年吉林省洮南市中考數(shù)學(xué)全真模擬模擬題及參考答案詳解(培優(yōu)B卷)_第2頁
2024年吉林省洮南市中考數(shù)學(xué)全真模擬模擬題及參考答案詳解(培優(yōu)B卷)_第3頁
2024年吉林省洮南市中考數(shù)學(xué)全真模擬模擬題及參考答案詳解(培優(yōu)B卷)_第4頁
2024年吉林省洮南市中考數(shù)學(xué)全真模擬模擬題及參考答案詳解(培優(yōu)B卷)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

吉林省洮南市中考數(shù)學(xué)全真模擬模擬題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、將拋物線先繞坐標(biāo)原點(diǎn)旋轉(zhuǎn),再向右平移個(gè)單位長度,所得拋物線的解析式為(

)A. B.C. D.2、已知拋物線P:,將拋物線P繞原點(diǎn)旋轉(zhuǎn)180°得到拋物線,當(dāng)時(shí),在拋物線上任取一點(diǎn)M,設(shè)點(diǎn)M的縱坐標(biāo)為t,若,則a的取值范圍是(

)A. B. C. D.3、如圖,正五邊形內(nèi)接于⊙,為上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),則的度數(shù)為(

)A. B. C. D.4、如圖,點(diǎn)O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°5、把圖中的交通標(biāo)志圖案繞著它的中心旋轉(zhuǎn)一定角度后與自身重合,則這個(gè)旋轉(zhuǎn)角度至少為(

)A.30° B.90° C.120° D.180°二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結(jié)論中正確的是(

)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE2、如圖,為的直徑延長線上的一點(diǎn),與相切,切點(diǎn)為,是上一點(diǎn),連接.已知,則下列結(jié)論正確的為(

)A.與相切 B.四邊形是菱形C. D.3、下列條件中,不能確定一個(gè)圓的是(

)A.圓心與半徑 B.直徑C.平面上的三個(gè)已知點(diǎn) D.三角形的三個(gè)頂點(diǎn)4、下列關(guān)于圓的敘述正確的有()A.對角互補(bǔ)的四邊形是圓內(nèi)接四邊形B.圓的切線垂直于圓的半徑C.正多邊形中心角的度數(shù)等于這個(gè)正多邊形一個(gè)外角的度數(shù)D.過圓外一點(diǎn)所畫的圓的兩條切線長相等5、下列方程中是一元二次方程的有(

)A.B.C.D.E.F.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、一個(gè)圓錐的底面半徑r=6,高h(yuǎn)=8,則這個(gè)圓錐的側(cè)面積是_____.2、若拋物線的圖像與軸有交點(diǎn),那么的取值范圍是________.3、如果關(guān)于的一元二次方程的一個(gè)解是,那么代數(shù)式的值是___________.4、如果一條拋物線與軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.5、拋物線的開口方向向______.四、解答題(6小題,每小題10分,共計(jì)60分)1、正方形ABCD的四個(gè)頂點(diǎn)都在⊙O上,E是⊙O上的一點(diǎn).(1)如圖①,若點(diǎn)E在上,F(xiàn)是DE上的一點(diǎn),DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE-BE=AE.請說明理由;(3)如圖②,若點(diǎn)E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長.2、已知拋物線y=mx2-2mx-3.(1)若拋物線的頂點(diǎn)的縱坐標(biāo)是-2,求此時(shí)m的值;(2)已知當(dāng)m≠0時(shí),無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個(gè)定點(diǎn),求出這兩個(gè)定點(diǎn)的坐標(biāo).3、如圖,方格中,每個(gè)小正方形的邊長都是單位1,△ABC的位置如圖.(1)畫出將△ABC向右平移2個(gè)單位得到的△A1B1C1;(2)畫出將△ABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2;(3)寫出C2點(diǎn)的坐標(biāo).4、如圖,二次函數(shù)的圖象交軸于、兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.求二次函數(shù)的解析式和直線的解析式;點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時(shí),求線段長度的最大值;在拋物線上是否存在異于、的點(diǎn),使中邊上的高為?若存在求出點(diǎn)的坐標(biāo);若不存在請說明理由.5、已知,是一元二次方程的兩個(gè)實(shí)數(shù)根.(1)求k的取值范圍;(2)是否存在實(shí)數(shù)k,使得等式成立?如果存在,請求出k的值,如果不存在,請說明理由.6、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).(1)如果P、Q分別從A、B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.-參考答案-一、單選題1、C【解析】【分析】先根據(jù)點(diǎn)繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)的坐標(biāo)變換規(guī)律、待定系數(shù)法求出旋轉(zhuǎn)后的拋物線的解析式,再根據(jù)二次函數(shù)的圖象平移的規(guī)律即可得.【詳解】將拋物線的頂點(diǎn)式為則其與x軸的交點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為點(diǎn)繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)的坐標(biāo)變換規(guī)律:橫、縱坐標(biāo)均變?yōu)橄喾磾?shù)則繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)后,所得拋物線與x軸的交點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為設(shè)旋轉(zhuǎn)后所得拋物線為將點(diǎn)代入得:,解得即旋轉(zhuǎn)后所得拋物線為則再向右平移個(gè)單位長度,所得拋物線的解析式為即故選:C.【考點(diǎn)】本題考查了點(diǎn)繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)的坐標(biāo)變換規(guī)律、待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的圖象平移的規(guī)律,熟練掌握坐標(biāo)旋轉(zhuǎn)變換規(guī)律和二次函數(shù)的圖象平移規(guī)律是解題關(guān)鍵.2、A【解析】【分析】先求出拋物線的解析式,再列出不等式,求出其解集或,從而可得當(dāng)x=1時(shí),,有成立,最后求出a的取值范圍.【詳解】解:∵拋物線P:,將拋物線P繞原點(diǎn)旋轉(zhuǎn)180°得到拋物線,∴拋物線P與拋物線關(guān)于原點(diǎn)對稱,設(shè)點(diǎn)(x,y)在拋物線P’上,則點(diǎn)(-x,-y)一定在拋物線P上,∴∴拋物線的解析式為,∵當(dāng)時(shí),在拋物線上任取一點(diǎn)M,設(shè)點(diǎn)M的縱坐標(biāo)為t,若,即令,∴,解得:或,設(shè),∵開口向下,且與x軸的兩個(gè)交點(diǎn)為(0,0),(4a,0),即當(dāng)時(shí),要恒成立,此時(shí),∴當(dāng)x=1時(shí),即可,得:,解得:,又∵∴故選A【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).3、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點(diǎn)的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點(diǎn)】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.4、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計(jì)算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計(jì)算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點(diǎn)】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個(gè)內(nèi)角.5、C【解析】【分析】根據(jù)圖形的對稱性,用360°除以3計(jì)算即可得解.【詳解】解:∵360°÷3=120°,∴旋轉(zhuǎn)的角度是120°的整數(shù)倍,∴旋轉(zhuǎn)的角度至少是120°.故選C.【考點(diǎn)】本題考查了旋轉(zhuǎn)對稱圖形,仔細(xì)觀察圖形求出旋轉(zhuǎn)角是120°的整數(shù)倍是解題的關(guān)鍵.二、多選題1、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項(xiàng)、B選項(xiàng)正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項(xiàng)正確,題目中并沒有提到E是OB中點(diǎn),所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項(xiàng)正確;B.由垂徑定理得:,B選項(xiàng)正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項(xiàng)正確;D.E不一定是OB中點(diǎn),所以不能證明OE=BE,D錯(cuò)誤.故選:ABC.【考點(diǎn)】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關(guān)鍵.2、ABCD【解析】【分析】A、利用切線的性質(zhì)得出∠PCO=90°,進(jìn)而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A項(xiàng)所求得出:∠CPB=∠BPD,進(jìn)而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),進(jìn)而得出答案;D、利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.【詳解】A、連接CO,DO,∵PC與⊙O相切,切點(diǎn)為C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD與⊙O相切,故A正確;B、由A項(xiàng)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故B正確;C、連接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正確;D、∵四邊形PCBD是菱形,∠CPO=30°,∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故D正確;故選:ABCD.【考點(diǎn)】此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識(shí),熟練利用全等三角形的判定與性質(zhì)是解題關(guān)鍵.3、C【解析】【分析】根據(jù)不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓,已知圓心和直徑所作的圓是唯一的進(jìn)行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個(gè)圓,不符合題意;B、已知直徑能確定一個(gè)圓,不符合題意;C、平面上的三個(gè)已知點(diǎn),不能確定一個(gè)圓,符合題意;D、已知三角形的三個(gè)頂點(diǎn),能確定一個(gè)圓,不符合題意;故選C.【考點(diǎn)】本題考查了確定圓的條件,解題的關(guān)鍵是分類討論.4、ACD【解析】【分析】根據(jù)圓內(nèi)接四邊形性質(zhì)直接可判斷A選項(xiàng)正確;利用切線的性質(zhì)可判斷B選項(xiàng)錯(cuò)誤;根據(jù)正多邊形中心角的定義和多邊形外角和可對判斷C選項(xiàng)正確;根據(jù)切線長定理可判斷D選項(xiàng)正確.【詳解】A.由圓內(nèi)接四邊形定義得:對角互補(bǔ)的四邊形是圓內(nèi)接四邊形,A選項(xiàng)正確;B.圓的切線垂直于過切點(diǎn)的半徑,B選項(xiàng)錯(cuò)誤;C.正多邊形中心角的度數(shù)等于這個(gè)正多邊形一個(gè)外角的度數(shù),都等于,C選項(xiàng)正確;D.過圓外一點(diǎn)引的圓的兩條切線,則切線長相等,D選項(xiàng)正確.故選:ACD.【考點(diǎn)】本題考查了正多邊形與圓、切線的性質(zhì)和確定圓的條件,解題關(guān)鍵是熟練掌握有關(guān)的概念.5、BCD【解析】【分析】根據(jù)一元二次方程的定義對6個(gè)選項(xiàng)逐一進(jìn)行分析.【詳解】A中最高次數(shù)是3不是2,故本選項(xiàng)錯(cuò)誤;B符合一元二次方程的定義,故本選項(xiàng)正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項(xiàng)正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項(xiàng)正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項(xiàng)錯(cuò)誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項(xiàng)錯(cuò)誤.故答案為:BCD【考點(diǎn)】本題考查了一元二次方程的概念,只有一個(gè)未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識(shí)點(diǎn).三、填空題1、60π【解析】【分析】利用圓錐的側(cè)面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側(cè)面積=π×10×6=60π,故答案為:60π.【考點(diǎn)】本題考查了圓錐的側(cè)面積,勾股定理等知識(shí),解題的關(guān)鍵是記住圓錐的側(cè)面積公式.2、【解析】【分析】由拋物線的圖像與軸有交點(diǎn)可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點(diǎn)∴令,有,即該方程有實(shí)數(shù)根∴∴.故答案是:【考點(diǎn)】本題考查了二次函數(shù)與軸的交點(diǎn)情況與一元二次方程分的情況的關(guān)系、解一元一次不等式,能由已知條件列出關(guān)于的不等式是解題的關(guān)鍵.3、【解析】【分析】根據(jù)關(guān)于的一元二次方程的一個(gè)解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關(guān)于的一元二次方程的一個(gè)解是,,,.故答案為:2020.【考點(diǎn)】本題考查一元二次方程的解,解答本題的關(guān)鍵是明確一元二次方程的解的含義.4、2【解析】【分析】首先求出的頂點(diǎn)坐標(biāo)和與x軸兩個(gè)交點(diǎn)坐標(biāo),然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點(diǎn)坐標(biāo)為∵當(dāng)時(shí),即,解得:,∴拋物線與x軸兩個(gè)交點(diǎn)坐標(biāo)為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點(diǎn)】此題考查了二次函數(shù)與x軸的交點(diǎn)問題,等腰直角三角形的性質(zhì),解題的關(guān)鍵是求出的頂點(diǎn)坐標(biāo)和與x軸兩個(gè)交點(diǎn)坐標(biāo).5、下【解析】【分析】根據(jù)二次函數(shù)二次項(xiàng)系數(shù)的大小判斷即可;【詳解】∵,∴拋物線開口向下;故答案是下.【考點(diǎn)】本題主要考查了判斷拋物線的開口方向,準(zhǔn)確分析判斷是解題的關(guān)鍵.四、解答題1、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性質(zhì),得AB=AD;根據(jù)圓周角的性質(zhì),得,結(jié)合DF=BE,即可完成證明;(2)由(1)結(jié)論得AF=AE,;結(jié)合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結(jié)合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH;結(jié)合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點(diǎn)共線;根據(jù)BC=CD,得,從而推導(dǎo)得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據(jù)勾股定理的性質(zhì)計(jì)算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結(jié)論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH∵四邊形BCDE內(nèi)接于圓∴∠CBE+∠CDE=180°∴E,D,H三點(diǎn)共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴CE=4.【考點(diǎn)】本題考查了正方形、圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的知識(shí);解題的關(guān)鍵是熟練掌握正方形、圓周角、正多邊形與圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的性質(zhì),從而完成求解.2、(1)-1;(2)(0,-3)與(2,-3).【解析】【分析】(1)根據(jù)拋物線的頂點(diǎn)的縱坐標(biāo)是?2,可以求得m的值;(2)根據(jù)當(dāng)m≠0時(shí),無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個(gè)定點(diǎn),可以求得這兩個(gè)定點(diǎn)的坐標(biāo).【詳解】解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線的頂點(diǎn)的縱坐標(biāo)是-2,∴-m-3=-2,解得m=-1,即m的值是-1;(2)∵當(dāng)m≠0時(shí),無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個(gè)定點(diǎn),當(dāng)m=1時(shí),y=x2-2x-3;當(dāng)m=2時(shí),y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴這兩個(gè)定點(diǎn)為(0,-3)與(2,-3).【考點(diǎn)】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想和二次函數(shù)的性質(zhì)解答.3、(1)見解析;(2)見解析;(3)C2(2,3).【解析】【分析】(1)根據(jù)平移的方法將三點(diǎn)向右平移2個(gè)單位得到,然后將三個(gè)點(diǎn)連起來即可;(2)根據(jù)旋轉(zhuǎn)的方法將三點(diǎn)繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)90°得到,然后將三個(gè)點(diǎn)連起來即可;(3)根據(jù)(2)中描出的點(diǎn)C2的位置即可寫出C2點(diǎn)的坐標(biāo).【詳解】解:(1)如圖所示,△A1B1C1即為所求,(2)如圖所示,△A2B2C2即為所求,(3)由(2)中點(diǎn)C2的位置可得,C2點(diǎn)的坐標(biāo)為(2,3).【考點(diǎn)】此題考查了平面直角坐標(biāo)系中的平移和旋轉(zhuǎn)變換作圖以及求點(diǎn)的坐標(biāo),解題的關(guān)鍵是熟練掌握平移和旋轉(zhuǎn)變換的方法.4、1

y=?x2+2x+3,y=?x+3;有最大值;存在滿足條件的點(diǎn),其坐標(biāo)為或【解析】【分析】可設(shè)拋物線解析式為頂點(diǎn)式,由點(diǎn)坐標(biāo)可求得拋物線的解析式,則可求得點(diǎn)坐標(biāo),利用待定系數(shù)法可求得直線解析式;設(shè)出點(diǎn)坐標(biāo),從而可表示出的長度,利用二次函數(shù)的性質(zhì)可求得其最大值;過作軸,交于點(diǎn),過和于,可設(shè)出點(diǎn)坐標(biāo),表示出的長度,由條件可證得為等腰直角三角形,則可得到關(guān)于點(diǎn)坐標(biāo)的方程,可求得點(diǎn)坐標(biāo).【詳解】解:拋物線的頂點(diǎn)的坐標(biāo)為,可設(shè)拋物線解析式為,點(diǎn)在該拋物線的圖象上,,解得,拋物線解析式為,即,點(diǎn)在軸上,令可得,點(diǎn)坐標(biāo)為,可設(shè)直線解析式為,把點(diǎn)坐標(biāo)代入可得,解得,直線解析式為;設(shè)點(diǎn)橫坐標(biāo)為,則,,,當(dāng)時(shí),有最大值;如圖,過作軸交于點(diǎn),交軸于點(diǎn),作于,設(shè),則,,是等腰直角三角形,,,當(dāng)中邊上的高為時(shí),即,,,當(dāng)時(shí),,方程無實(shí)數(shù)根,當(dāng)時(shí),解得或,或,綜上可知存在滿足條件的點(diǎn),其坐標(biāo)為或.【考點(diǎn)】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、二次函數(shù)的性質(zhì)、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論