綜合解析京改版數(shù)學9年級上冊期末試卷及答案詳解【奪冠系列】_第1頁
綜合解析京改版數(shù)學9年級上冊期末試卷及答案詳解【奪冠系列】_第2頁
綜合解析京改版數(shù)學9年級上冊期末試卷及答案詳解【奪冠系列】_第3頁
綜合解析京改版數(shù)學9年級上冊期末試卷及答案詳解【奪冠系列】_第4頁
綜合解析京改版數(shù)學9年級上冊期末試卷及答案詳解【奪冠系列】_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

京改版數(shù)學9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖所示,某校數(shù)學興趣小組利用標桿測量建筑物的高度,已知標桿高,測得,,則建筑物的高是()A. B. C. D.2、如圖,正比例函數(shù)和反比例函數(shù)的圖象在第一象限交于點且則的值為(

)A. B. C. D.3、若關于的一元二次方程的兩根分別為,,則二次函數(shù)的對稱軸為直線(

)A. B. C. D.4、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(

)A. B. C. D.5、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a(chǎn)≠1 B.a(chǎn)≠﹣1 C.a(chǎn)=1 D.a(chǎn)=±16、如圖,Rt△ABC中,,,,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿AB向B點運動,設E點的運動時間為t秒,連接DE,當以B、D、E為頂點的三角形與△ABC相似時,t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.4二、多選題(7小題,每小題2分,共計14分)1、如圖,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,且,下列結論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的為(

)A.① B.② C.③ D.④2、下列說法中,正確的是(

)A.兩角對應相等的兩個三角形相似B.兩邊對應成比例的兩個三角形相似C.兩邊對應成比例且夾角相等的兩個三角形相似D.三邊對應成比例的兩個三角形相似3、在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,且a=5,b=12,c=13,下面四個式子中正確的有()A.sinA= B.cosA= C.tanA= D.sinB=4、如圖,在矩形ABCD中,對角線AC、BD相交于G,E為AD的中點,連接BE交AC于F,連接FD,若∠BFA=90°,則下列四對三角形中相似的為()A.△BEA與△ACD B.△FED與△DEB C.△CFD與△ABG D.△ADF與△EFD5、不能說明△ABC∽△A’B’C’的條件是(

)A.或 B.且C.且 D.且6、如圖,△ABC中,P為AB上點,在下列四個條件中能確定△APC和△ACB相似的是(

)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.7、二次函數(shù)(,,為常數(shù),)的部分圖象如圖所示,圖象頂點的坐標為,與軸的一個交點在點和點之間,給出的四個結論中正確的有(

)A. B.C. D.時,方程有解第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,小明在距離地面30米的P處測得A處的俯角為15°,B處的俯角為60°.若斜面坡度為1:,則斜坡AB的長是__________米.2、如圖,邊長為4的正方形的對稱中心是坐標原點O,軸,軸,反比例函數(shù)與的圖像均與正方形的邊相交,則圖中陰影部分的面積之和是________.3、將拋物線沿直線方向移動個單位長度,若移動后拋物線的頂點在第一象限,則移動后拋物線的解析式是__________.4、如圖,點P,A,B,C在同一平面內(nèi),點A,B,C在同一直線上,且PC⊥AC,在點A處測得點P在北偏東60°方向上,在點B處測得點P在北偏東30°方向上,若AP=12千米,則A,B兩點的距離為___千米.5、如圖,在△ABC中,∠B=45°,tanC=,AB=,則AC=_____.6、如圖,△ABC中,∠ACB=90°,AB=5,AC=3,BC為半圓O的直徑,將△ABC沿射線CB方向平移得到△A1B1C1.當A1B1與半圓O相切于點D時,平移的距離的長為_____.7、如圖所示,在△ABC中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長為_________;(2)如圖2,若△ABC內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長為_________.四、解答題(6小題,每小題10分,共計60分)1、某廠家生產(chǎn)一批遮陽傘,每個遮陽傘的成本價是20元,試銷售時發(fā)現(xiàn):遮陽傘每天的銷售量y(個)與銷售單價x(元)之間是一次函數(shù)關系,當銷售單價為28元時,每天的銷售量為260個;當銷售單價為30元時,每天的銷售量為240個.(1)求遮陽傘每天的銷出量y(個)與銷售單價x(元)之間的函數(shù)關系式;(2)設遮陽傘每天的銷售利潤為w(元),當銷售單價定為多少元時,才能使每天的銷售利潤最大?最大利潤是多少元?2、已知關于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關系;(3)若將拋物線沿軸翻折得到新拋物線,當時,新拋物線對應的函數(shù)有最小值3,求的值.3、如圖,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的長.4、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點,連接AO,BO,延長AO交反比例函數(shù)圖象于點C.(1)求一次函數(shù)y1的表達式與反比例函數(shù)y2的表達式;(2)當y1<y2,時,直接寫出自變量x的取值范圍;(3)點P是x軸上一點,當時,請求出點P的坐標.5、計算:(1)(2)6、如圖,已知中,,點在邊上,滿足求證:(1)(2).-參考答案-一、單選題1、A【解析】【分析】先求得AC,再說明△ABE∽△ACD,最后根據(jù)相似三角形的性質列方程解答即可.【詳解】解:∵,∴AC=1.2m+12.8m=14m∵標桿和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴,即,解得CD=17.5m.故答案為A.【考點】本題考查了相似三角形的應用,正確判定相似三角形并利用相似三角形的性質列方程計算是解答本題的關鍵.2、D【解析】【分析】根據(jù)點在直線正比例函數(shù)上,則它的坐標應滿足直線的解析式,故點的坐標為.再進一步利用了勾股定理,求出點的坐標,根據(jù)待定系數(shù)法進一步求解.【詳解】解:作軸于.設A點坐標為,在中,即,解得(舍去)、;∴點坐標為,將代入數(shù)得:.故選:.【考點】此題考查了正比例函數(shù)圖象上點的坐標特征和用待定系數(shù)法求函數(shù)解析式,構造直角三角形求出點A坐標是解題關鍵,構思巧妙,難度不大.3、C【解析】【分析】根據(jù)兩根之和公式可以求出對稱軸公式.【詳解】解:∵一元二次方程ax2+bx+c=0的兩個根為?2和4,∴x1+x2=?=2.∴二次函數(shù)的對稱軸為x=?=×2=1.故選:C.【考點】本題考查了求二次函數(shù)的對稱軸,要求熟悉二次函數(shù)與一元二次方程的關系和兩根之和公式,并熟練運用.4、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個內(nèi)角,再根據(jù)等邊對等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點】本題考查圓內(nèi)接正五邊形的性質,等腰三角形性質,三角形內(nèi)角和公式,角的和差計算,掌握圓內(nèi)接正五邊形的性質,等腰三角形性質,三角形內(nèi)角和公式,角的和差計算是解題關鍵.5、A【解析】【分析】利用二次函數(shù)定義進行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點】本題主要考查了二次函數(shù)的定義,準確計算是解題的關鍵.6、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當∠EDB=∠ACB=90°時,DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當∠DEB=∠ACB=90°時,證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當∠EDB=∠ACB=90°時,DE∥AC,所以△EBD∽△ABC,E為AB的中點,AE=BE=AB=2cm,∴t=2s;②當∠DEB=∠ACB=90°時,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點,∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當以B、D、E為頂點的三角形與△ABC相似時,t的值為2或3.5,故選A.【考點】本題考查了相似三角形的判定、平行線的性質、含30°角的直角三角形的性質等知識;熟記相似三角形的判定方法是解決問題的關鍵,注意分類討論.二、多選題1、BC【解析】【分析】根據(jù)相似三角形的定義,已知條件判定相似的三角形,再利用相似三角形的性質逐一判斷選項即可.【詳解】解:在正方形中,是的中點,是上一點,且,,..,.,,,..,.②③正確.故選:BC.【考點】本題考查了相似三角形的判定與性質,解題的關鍵是掌握判定定理有①有兩個對應角相等的三角形相似,②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.2、ACD【解析】【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】A

“兩角對應相等的兩個三角形相似”是正確的;B

“兩邊對應成比例的兩個三角形相似”是錯誤的,還需添上條件“且夾角相等”才成立;C

“兩邊對應成比例且夾角相等的兩個三角形相似”是正確的;D

“三邊對應成比例的兩個三角形相似”是正確的故選:ACD【考點】本題考查了相似三角形的判定定理,做題的關鍵是熟練掌握相似三角形的判定定理.3、AC【解析】【分析】由a、b、c的關系可知,△ABC是直角三角形,然后根據(jù)銳角三角函數(shù)的定義求各角函數(shù)值.【詳解】解:由題意,∠A,∠B,∠C對邊分別為a,b,c,a=5,b=12,c=13,∴△ABC是直角三角形,∠C=90°.∴A、sinA=,該選項正確,符合題意;B、cosA=,該選項不正確,不符合題意;C、tanA=,該選項正確,符合題意;D、sinB=,該選項不正確,不符合題意;故選:AC.【考點】本題考查的是銳角三角函數(shù)的定義,銳角A的對邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對邊a與鄰邊b的比叫做∠A的正切.4、ABCD【解析】【分析】根據(jù)判定三角形相似的條件對選項逐一進行判斷.【詳解】解:根據(jù)題意得:∠BAE=∠ADC=∠AFE=90°∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°∴∠AEF=∠ACD∴△BEA∽△ACD;∵∠AEB=∠FEA,∠AFE=∠EAB=90°,∴△AFE∽△BAE,∴,又∵AE=ED,∴而∠BED=∠BED,∴△FED∽△DEB;∵ABCD,∴∠BAC=∠GCD,∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,∴∠ABG=∠DAF+∠EDF=∠DFC;∵∠ABG=∠DFC,∠BAG=∠DCF,∴△CFD∽△ABG;∵△FED∽△DEB,∴∠EFD=∠EDB,∵AG=DG,∴∠DAF=∠ADG,∴∠DAF=∠EFD,∴△ADF∽△EFD.故選:ABCD.【考點】此題考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.5、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應成比例且夾角相等的兩個三角形相似;三邊對應成比例的兩個三角形相似;兩角對應相等的兩個三角形相似.6、ABD【解析】【分析】根據(jù)有兩組角對應相等的兩個三角形相似可對A、B、C進行判斷;根據(jù)兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對D進行判斷.【詳解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故選項A正確,符合題意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故選項B正確,符合題意;∵∠CAP=∠BAC,只有一組角相等,∴不能判斷△APC和△ACB相似,故選項C錯誤,不符合題意;∵,∠A是夾角,∴△APC∽△ACB,故選項D正確,符合題意.故答案為:ABD.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似;有兩組角對應相等的兩個三角形相似.7、BCD【解析】【分析】根據(jù)拋物線與軸有兩個交點,可知,即可判斷A選項;根據(jù)時,,即可判斷B選項;根據(jù)對稱軸,即可判斷C選項;D.根據(jù)拋物線的頂點坐標為,函數(shù)有最大即可判定D.【詳解】解:由圖象可知,拋物線開口向下,對稱軸在軸的右側,與軸的交點在軸的負半軸,∵拋物線與軸有兩個交點,∴,∴,即,故A錯誤;由圖象可知,時,,∴,故B正確;∵拋物線的頂點坐標為,∴,,∵,∴,即,故C正確;∵拋物線的開口向下,頂點坐標為,∴(為任意實數(shù)),即時,方程有解.故D正確.故選BCD.【考點】本題主要考查了二次函數(shù)的性質、二次函數(shù)圖像等知識點,掌握二次函數(shù)的性質與解析式的關系是解答本題的關鍵.三、填空題1、【解析】【分析】首先根據(jù)題意得出∠ABF=30°,進而得出∠PBA=90°,∠BAP=45°,再利用銳角三角函數(shù)關系求出即可.【詳解】解:如圖所示:過點A作AF⊥BC于點F,∵斜面坡度為1:,∴tan∠ABF=,∴∠ABF=30°,∵在距離地面30米的P處測得A處的俯角為15°,B處的俯角為60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°=,解得:PB=,故AB=m,故答案為:.【考點】此題主要考查了解直角三角形的應用,正確得出PB=AB是解題關鍵.2、8【解析】【分析】根據(jù)題意,觀察圖形可得圖中的陰影部分的面積是圖中正方形面積的一半,且AB∥x軸,BC∥y軸,而正方形面積為16,由此可以求出陰影部分的面積.【詳解】解:根據(jù)題意:觀察圖形可得,圖中以B、D為頂點的小陰影部分,繞點O順時針旋轉90°,正好和以A、C為頂點的小空白部分重合,所以陰影的面積是圖中正方形面積的一半,且AB∥x軸,BC∥y軸,反比例函數(shù)與的圖象均與正方形ABCD的邊相交,而邊長為4的正方形面積為16,所以圖中的陰影部分的面積是8.故答案為:8.【考點】本題主要考查反比例函數(shù)圖象和性質的應用,關鍵是要分析出其圖象特點,再結合性質作答.3、【解析】【分析】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),再求出平移后的頂點坐標,最后求出平移后的函數(shù)關系式.【詳解】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的頂點坐標為(1,3),∴移動后拋物線的解析式是.故答案為:.【考點】本題考查二次函數(shù)的圖象變換及一次函數(shù)的圖像,解題的關鍵是正確理解圖象變換的條件,本題屬于基礎題型.4、【解析】【分析】根據(jù)題意和題目中的數(shù)據(jù),可以計算出AC和BC的長,然后即可得到AB的長,從而可以解答本題.【詳解】解:∵PC⊥AC,在點A處測得點P在北偏東60°方向上,∴∠PCA=90°,∠PAC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在點B處測得點P在北偏東30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴千米,∴(千米),故答案為:.【考點】本題考查解直角三角形的應用-方向角問題,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.5、【解析】【分析】先過點A作AD⊥BC,垂足是點D,得出AD2+BD2=AB2=2,再根據(jù)∠B=45°,得出AD=BD=1,然后根據(jù)tanC=,得出=,CD=2,最后根據(jù)勾股定理即可求出AC.【詳解】過點A作AD⊥BC,垂足是點D,∵AB=,∴AD2+BD2=AB2=2,∵∠B=45°,∴∠BAD=∠B=45°,∴AD=BD,∴AD2=BD2=1,∴AD=BD=1,∵tanC=,∴=,∴CD=2,∴AC===.故答案為.【考點】此題考查了解直角三角形,用到的知識點是勾股定理、解直角三角形等,關鍵是作出輔助線,構造直角三角形.6、【解析】【分析】連結OG,如圖,根據(jù)勾股定理得到BC=4,根據(jù)平移的性質得到CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,根據(jù)切線的性質得到OD⊥A1B1,根據(jù)相似三角形的性質即可得到結論.【詳解】連結OG,如圖,∵∠BAC=90°,AB=5,AC=3,∴BC==4,∵Rt△ABC沿射線CB方向平移,當A1B1與半圓O相切于點D,得△A1B1C1,∴CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,∵A1B1與半圓O相切于點D,∴OD⊥A1B1,∵BC=4,線段BC為半圓O的直徑,∴OB=OC=2,∵∠GEO=∠DEF,∴Rt△B1OD∽Rt△B1A1C1,∴,即,解得OB1=,∴BB1=OB1﹣OB=﹣2=,故答案為.【考點】本題考查了切線的性質,平移的性質、勾股定理和相似三角形的判定與性質,熟練掌握相關性質是解題的關鍵.7、

【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質即可求出正方形的邊長;(2)設正方形的邊長是x,則過點C作CN⊥AB,垂足為N,交GF于點M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點M,交AB于點N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點C作CN⊥AB,垂足為N,交GF于點M,設小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點】本題主要考查了正方形,矩形的性質和相似三角形的性質.會利用三角形相似中的相似比來得到相關的線段之間的等量關系是解題的關鍵.四、解答題1、(1)y=﹣10x+540;(2)當銷售單價定為37元時,才能使每天的銷售利潤最大,最大利潤是2890元【解析】【分析】(1)設函數(shù)關系式為y=kx+b,由銷售單價為28元時,每天的銷售量為260個;銷售單價為30元時,每天的銷量為240個;列方程組求解即可;(2)由每天銷售利潤=每個遮陽傘的利潤×銷售量,列出函數(shù)關系式,再由二次函數(shù)的性質求解即可;(1)解:設一次函數(shù)關系式為y=kx+b,由題意可得:,解得:,∴函數(shù)關系式為y=﹣10x+540;(2)解:由題意可得:w=(x﹣20)y=(x﹣20)(﹣10x+540)=﹣10(x﹣37)2+2890,∵﹣10<0,二次函數(shù)開口向下,∴當x=37時,w有最大值為2890,答:當銷售單價定為37元時,才能使每天的銷售利潤最大,最大利潤是2890元.【考點】本題考查了一次函數(shù)和二次函數(shù)的實際應用,待定系數(shù)法求解析式,掌握二次函數(shù)的性質是解題的關鍵.2、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當拋物線開口向上時,誰離對稱軸遠誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數(shù),方程有兩個不相等的實數(shù)根∴無論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠對應的函數(shù)值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當時,有最小值∴解得,∵∴②若,即,則當時,有最小值-1不合題意,舍去③若,,則當時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關系來確定二次函數(shù)的最值是解本題的關鍵.3、9【解析】【分析】過點A作AF⊥BC交BC于F,則由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,則在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,從而求出BC.【詳解】解:過點A作AF⊥BC交BC于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論