




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省共青城市中考數(shù)學真題分類(平行線的證明)匯編綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,,若,則的度數(shù)是(
)A.80° B.70° C.65° D.60°2、將一副三角板()按如圖所示方式擺放,使得,則等于()A. B. C. D.3、如圖,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,則∠DCB的度數(shù)為(
)A.75° B.65°C.40° D.30°4、如圖,將沿翻折,三個頂點恰好落在點處.若,則的度數(shù)為(
)A. B.C. D.5、如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(
)A.15° B.20° C.25° D.30°6、用反證法證明命題“三角形中必有一個內角小于或等于60°”時,首先應該假設這個三角形中()A.有一個內角小于60° B.每一個內角都小于60°C.有一個內角大于60° D.每一個內角都大于60°7、若△ABC三個角的大小滿足條件∠A:∠B:∠C=1:3:4,則∠C的大小為(
)A.22.5° B.45° C.67.5° D.90°8、如圖,,的角平分線交于點,若,,則的度數(shù)(
)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在中,,和的平分線交于點,得和的平分線交于點,得和的平分線交于點,得和的平分線交于點,得,則________度.2、下圖是某工人加工的一個機器零件(數(shù)據(jù)如圖),經(jīng)過測量不符合標準.標準要求是:,且、、保持不變?yōu)榱诉_到標準,工人在保持不變情況下,應將圖中____(填“增大”或“減小”)_____度.3、如圖,一束光沿方向,先后經(jīng)過平面鏡、反射后,沿方向射出,已知,,則_________.4、如圖,若AB⊥BC,BC⊥CD,則直線AB與CD的位置關系是______.5、已知三條不同的直線a、b、c在同一平面內,下列四個命題:①如果ab,a⊥c,那么b⊥c;②如果ba,ca,那么bc;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么bc.其中是假命題的是__________.(填序號)6、請把以下說理過程補充完整:如圖,AB∥CD,∠C=∠D,如果∠1=∠2,那么∠E與∠C互為補角嗎?說說你的理由.解:因為∠1=∠2,根據(jù)___________,所以EF∥________.又因為AB∥CD,根據(jù)___________,所以EF∥________.根據(jù)____________,所以∠E+________=_________°.又因為∠C=∠D,所以∠E+________=_________°,所以∠E與∠C互為補角.7、如圖,四邊形ABCD中,點M,N分別在AB,BC上,將沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠B=___°.三、解答題(7小題,每小題10分,共計70分)1、如圖,在△ABC中,D為AB邊上一點,E為BC邊上一點,∠BCD=∠BDC(1)若∠ACD=15°,∠CAD=40°,則∠B=度(直接寫出答案);(2)請說明:∠EAB+∠AEB=2∠BDC的理由.2、如圖,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于點E.P是邊BC上的動點(不與B,C重合),連結AP,將△APC沿AP翻折得△APD,連結DC,記∠BCD=α.(1)如圖,當P與E重合時,求α的度數(shù).(2)當P與E不重合時,記∠BAD=β,探究α與β的數(shù)量關系.3、如圖,已知BD⊥AC,EF⊥AC,垂足分別為D、F,∠1=∠2,請將證明∠ADG=∠C過程填寫完整.證明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥∴∠ADG=∠C4、如圖,BD⊥AC于點D,EF⊥AC于點F,∠AMD=∠AGF,∠1=∠2=35°.(1)求∠GFC的度數(shù);(2)求證:DM∥BC.5、如圖:∠1+∠2=180°,∠C=∠D,則∠A=∠F嗎?請說明理由.6、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).7、如圖,∠1=∠2,∠3=∠4,∠5=∠6,求證:CEBF.-參考答案-一、單選題1、B【解析】【分析】由根據(jù)全等三角形的性質可得,再利用三角形內角和進行求解即可.【詳解】,,,,,,故選:B.【考點】本題考查了全等三角形的性質及三角形的內角和定理,熟練掌握知識點是解題的關鍵.2、A【解析】【分析】根據(jù)平行線的性質和三角形外角的性質進行計算,即可得到答案.【詳解】解:,.,.故選.【考點】本題考查平行線的性質和三角形外角的性質,解題的關鍵是掌握平行線的性質和三角形外角的性質.3、B【解析】【分析】直接利用全等三角形的性質得出對應角相等進而求出答案.【詳解】解:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,故選:B.【考點】此題主要考查了全等三角形的性質,正確得出對應角的度數(shù)是解題關鍵.4、D【解析】【分析】根據(jù)翻折變換前后對應角不變,故∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,進而求出∠1+∠2的度數(shù).【詳解】解:∵將△ABC三個角分別沿DE、HG、EF翻折,三個頂點均落在點O處,∴∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,∵∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故選:D.【考點】此題主要考查了翻折變換的性質和三角形的內角和定理,根據(jù)已知得出∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°是解題關鍵.5、B【解析】【分析】利用三角形外角的性質,得到∠ACD與∠ABD的關系,然后用角平分線的性質得到角相等的關系,代入計算即可得到答案.【詳解】解:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點】本題綜合考查角平分線的性質、三角形外角的性質、三角形內角和等知識點.解題的關鍵是熟練的運用所學性質去求解.6、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個內角小于或等于60°”時,應先假設三角形中每一個內角都不小于或等于60°,即每一個內角都大于60°.故選:D.【考點】本題考查反證法,熟知反證法的證明步驟,正確得出原結論的反面是解答的關鍵.7、D【解析】【分析】先用∠A表示出∠B、∠C,再根據(jù)三角形的內角和定理求出∠A、∠C得結論.【詳解】解:∵∠A:∠B:∠C=1:3:4,∴∠B=3∠A,∠C=4∠A.∵∠A+∠B+∠C=180,∴∠A+3∠A+4∠A=180.∴∠A=22.5.∴∠C=4∠A=4×22.5=90.故選:D.【考點】本題考查了三角形的內角和定理,掌握“三角形的內角和等于180”是解決本題的關鍵.8、A【解析】【分析】法一:延長PC交BD于E,設AC、PB交于F,根據(jù)三角形的內角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根據(jù)三角形的外角性質得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD?∠D,根據(jù)PB、PC是角平分線得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A?∠D,代入即可求出∠P.法二:延長DC,與AB交于點E.設AC與BP相交于O,則∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入計算即可.【詳解】解:法一:延長PC交BD于E,設AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD?∠D,∴∠P+∠PBE=∠PCD?∠D,∴2∠P+∠PCF+∠PBE=∠A?∠D+∠ABF+∠PCD,∵PB、PC是角平分線∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A?∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD?∠ABD=58°.設AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°?(∠ACD?∠ABD)=19°.故選A.【考點】本題主要考查對三角形的內角和定理,三角形的外角性質,對頂角的性質,角平分線的性質等知識點的理解和掌握,能熟練地運用這些性質進行計算是解此題的關鍵.二、填空題1、【解析】【分析】根據(jù)角平分線的定義,由BA1平方∠ABC,A1C平分∠ACD,得∠A1CD=∠ACD,∠A1BC=∠ABC.根據(jù)三角形外角的性質,得∠A1=∠A1CD-∠A1BC,那么∠A1=∠ACD?ABC=∠A.再根據(jù)特殊到一般的數(shù)學思想解決此題.【詳解】解:∵BA1平分∠ABC,A1C平分∠ACD,∴∠A1CD=∠ACD,∠A1BC=∠ABC.∵∠A1=∠A1CD-∠A1BC,∴∠A1=∠ACD?ABC=∠A.同理可證:∠A2=∠A1.∴∠A2=?∠A=()2∠A.以此類推,∠An=()n∠A.當n=2022,∠A2021=()2022∠A=()2022?m°=()°.故答案為:.【考點】本題主要考查三角形外角的性質、角平分線的定義,熟練掌握三角形外角的性質、角平分線的定義是解決本題的關鍵.2、
減小
15【解析】【分析】延長EF到H與CD交于H,先利用對頂角的性質和三角形內角和定理求出DCE=60°,然后根據(jù)三角形外角的性質得到∠DHE=∠E+∠DCE=100°,∠DFE=∠D+∠DHF,由此求解即可.【詳解】解:如圖,延長EF到H與CD交于H,∵∠DCE=∠ACB=180°-∠A-∠B,∠A=70°,∠B=50°,∴∠DCE=60°,∴∠DHE=∠E+∠DCE=100°,∵∠DFE=∠D+∠DHF,∴∠D=∠DFE-∠DHF=120°-100°=20°,∴∠D從35°減小到20°,減小了15°,故答案為:減小,15.【考點】本題主要考查了三角形內角和定理,三角形外角的性質,對頂角的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.3、40°##40度【解析】【分析】根據(jù)入射角等于反射角,可得,根據(jù)三角形內角和定理求得,進而即可求解.【詳解】解:依題意,,∵,,,∴,.故答案為:40.【考點】本題考查了軸對稱的性質,三角形內角和定理的應用,掌握軸對稱的性質是解題的關鍵.4、AB∥CD【解析】【詳解】∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案為AB∥CD.5、③【解析】【分析】根據(jù)平行線的性質,判定及基本事實進行判斷.【詳解】①如果a∥b,a⊥c,那么b⊥c,是真命題;②如果b∥a,c∥a,那么b∥c,是真命題;③如果b⊥a,c⊥a,那么b∥c,則原命題是假命題;④如果b⊥a,c⊥a,那么b∥c,是真命題.故答案為:③.【考點】本題考查真假命題的判斷,熟練掌握平行線的基本事實及判定是解題的關鍵.6、內錯角相等,兩直線平行;AB;平行于同一條直線的兩條直線平行;CD;兩直線平行,同旁內角互補;∠D;180;∠C;180【解析】【分析】由已知角相等,利用內錯角相等兩直線平行得到AB與EF平行,再由AB與CD平行,利用平行于同一條直線的兩直線平行即可得EF與CD平行,然后由兩直線平行,同旁內角互補可得∠E+∠D=180°,最后等量代換得到∠E+∠C=180°.【詳解】解:因為∠1=∠2,根據(jù)_內錯角相等,兩直線平行,所以EF∥__AB_.又因為AB∥CD,根據(jù)_平行于同一條直線的兩條直線平行,所以EF∥__CD___.根據(jù)兩直線平行,同旁內角互補,所以∠E+_∠D=__180°.又因為∠C=∠D,所以∠E+_∠C_=_180°,所以∠E與∠C互為補角.【考點】此題考查了平行線的判定與性質,熟練掌握平行線的判定與性質是解本題的關鍵.7、95【解析】【詳解】∵MF//AD,F(xiàn)N//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案為:95三、解答題1、(1)70(2)見解析【解析】【分析】(1)利用三角形的外角性質可求出∠BDC的度數(shù),結合∠BCD=∠BDC可得出∠BCD的度數(shù),再在△BCD中,利用三角形內角和定理可求出∠B的度數(shù);(2)在△ABE中,利用三角形內角和定理可得出∠EAB+∠AEB=180°﹣∠B,在△BCD中,利用三角形內角和定理及∠BCD=∠BDC可得出2∠BDC=180°﹣∠B,進而可得出∠EAB+∠AEB=2∠BDC.(1)解:∵∠ACD=15°,∠CAD=40°,∴∠BDC=∠ACD+∠CAD=55°,∴∠BCD=∠BDC=55°.在△BCD中,∠BDC+∠BCD+∠B=180°,∴∠B=180°﹣55°﹣55°=70°.故答案為:70;(2)解:在△ABE中,∠EAB+∠AEB+∠B=180°,∴∠EAB+∠AEB=180°﹣∠B.在△BCD中,∠BDC+∠BCD+∠B=180°,∠BCD=∠BDC,∴2∠BDC=180°﹣∠B,∴∠EAB+∠AEB=2∠BDC.【考點】本題考查了三角形內角和定理以及三角形的外角性質,解題的關鍵是:(1)利用三角形的外角性質,求出∠BDC的度數(shù);(2)利用三角形內角和定理,找出∠EAB+∠AEB=180°﹣∠B及2∠BDC=180°﹣∠B.2、(1)25°(2)①當點P在線段BE上時,2α-β=50°;②當點P在線段CE上時,2α+β=50°【解析】【分析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根據(jù)AE平分∠BAC,P與E重合,可得∠ACD,從而α=∠ACB?∠ACD;(2)分兩種情況:①當點P在線段BE上時,可得∠ADC=∠ACD=90°?α,根據(jù)∠ADC+∠BAD=∠B+∠BCD,即可得2α?β=50°;②當點P在線段CE上時,延長AD交BC于點F,由∠ADC=∠ACD=90°?α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90°?α=40°+α+β,即2α+β=50°.(1)解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=∠BAC=25°,∵P與E重合,∴D在AB邊上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;(2)①如圖1,當點P在線段BE上時,∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;②如圖2,當點P在線段CE上時,延長AD交BC于點F,∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,∴90°-α=40°+α+β,∴2α+β=50°.【考點】本題考查三角形綜合應用,涉及軸對稱變換,三角形外角等于不相鄰的兩個內角的和的應用,解題的關鍵是掌握軸對稱的性質,能熟練運用三角形外角的性質.3、垂直的定義;EF;兩直線平行,同位角相等;BC;兩直線平行,同位角相等.【解析】【分析】根據(jù)垂直求出∠BDC=∠EFC=90°,根據(jù)平行線的判定得出BD∥EF,根據(jù)平行線的性質得出∠2=∠3,求出∠1=∠3,根據(jù)平行線的判定得出DG∥BC即可.【詳解】證明:∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC=90°,垂直的定義∴BD∥EF,∴∠2=∠3(兩直線平行,同位角相等),又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥BC,∴∠ADG=∠C.兩直線平行,同位角相等【考點】本題考查了平行線的性質和判定,能熟練地運用定理進行推理是解此題的關鍵,注意:平行線的性質有:①兩直線平行,同位角相等,②兩直線平行,內錯角相等,③兩直線平行,同旁內角互補,反之亦然.4、(1)125°;(2)證明見解析【解析】【分析】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根據(jù)平行線的性質得到∠EFG=∠1=35°,再根據(jù)角的和差關系可求∠GFC的度數(shù);(2)根據(jù)平行線的性質得到∠2=∠CBD,等量代換得到∠1=∠CBD,根據(jù)平行線的判定定理得到GF∥BC,證得MD∥GF,根據(jù)平行線的性質即可得到結論.【詳解】解:(1)∵BD⊥AC,EF⊥AC,∴BD∥EF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Web數(shù)據(jù)可視化教程(基于ECharts)課件 任務2-3 繪制ECharts柱狀圖和平滑折線圖
- 醫(yī)藥業(yè)務知識培訓課件制度
- 水土流失治理-洞察及研究
- 船舶安全監(jiān)管強化-洞察及研究
- 生態(tài)旅游可持續(xù)發(fā)展-第12篇-洞察及研究
- 肺部感染與飲食護理
- 電子崗招聘試題及答案
- 2025年預防接種技能競賽單選題(含答案)
- 生質資源利用-洞察及研究
- 2025年初級家政服務員理論考核試題及答案
- 學習適應性測驗(AAT)(小學五、六年級)
- 雷鋒大事年表
- 05616 心理測量與評估 考點匯總
- GB/T 39241-2020無損檢測超聲檢測穿透技術
- GB/T 13323-1991光學制圖
- 第四章材料現(xiàn)代分析方法
- 2022年重慶市水務資產經(jīng)營有限公司校園招聘筆試試題及答案解析
- 核醫(yī)學總論課件
- 熱性驚厥診斷治療與管理專家共識主要內容(全文)
- 建設項目水資源論證登記表
- 公路工程質量檢驗評定jtgf80-1
評論
0/150
提交評論