




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省韶山市中考數(shù)學(xué)真題分類(平行線的證明)匯編難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、在中,若一個內(nèi)角等于另外兩個角的差,則(
)A.必有一個角等于 B.必有一個角等于C.必有一個角等于 D.必有一個角等于2、如圖,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,則∠AEB的度數(shù)為()A.100° B.110° C.120° D.130°3、若△ABC三個角的大小滿足條件∠A:∠B:∠C=1:3:4,則∠C的大小為(
)A.22.5° B.45° C.67.5° D.90°4、如圖,在中,,,,,連接BC,CD,則的度數(shù)是()A.45° B.50° C.55° D.80°5、如圖,在△ABC中,∠C=70o,沿圖中虛線截去∠C,則∠1+∠2=(
)A.360o B.250o C.180o D.140o6、如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°7、下列命題正確的是
()A.三角形的外角大于它的內(nèi)角B.三角形的一個外角等于它的兩個內(nèi)角C.三角形的一個內(nèi)角小于與它不相鄰的外角D.三角形的外角和是180°8、如圖,將三角形紙片沿折疊,當(dāng)點落在四邊形的外部時,測量得,,則的度數(shù)為(
)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖折疊一張矩形紙片,已知∠1=70°,則∠2的度數(shù)是__.2、如圖,將三角形紙片ABC沿EF折疊,使得A點落在BC上點D處,連接DE,DF,.設(shè),,則α與β之間的數(shù)量關(guān)系是________.3、如圖,在中,,將沿直線m翻折,點B落在點D的位置,則__________.4、如圖,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD與BE交于H,則∠CHD=_____.5、如圖,將一副三角尺按圖中所示位置擺放,點F在AC上,其中∠ACB=∠EFD=90°,∠ABC=60°,∠DEF=45°,AB∥DE,則∠AFD的大小為___________度.6、在△ABC中,將∠B、∠C按如圖方式折疊,點B、C均落于邊BC上一點G處,線段MN、EF為折痕.若∠A=80°,則∠MGE=_____°.7、如圖,將三角形紙片ABC按如圖方式折疊:折痕分別為DC和DE,點A與BC邊上的點G重合,點B與DG延長線上的點F重合.若滿足∠ACB=40°,則∠CEF=_______度.三、解答題(7小題,每小題10分,共計70分)1、已知://.求證://.2、如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.(1)求∠CBE的度數(shù);(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).3、如圖,在中,點D為上一點,將沿翻折得到,與相交于點F,若平分,,.(1)求證:;(2)求的度數(shù).4、已知:如圖,點在上,且.求證:.
5、如圖,在△ABC中,點D為∠ABC的平分線BD上一點,連接AD,過點D作EF∥BC交AB于點E,交AC于點F.(1)如圖1,若AD⊥BD于點D,∠BEF=120°,求∠BAD的度數(shù);(2)如圖2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度數(shù)(用含α和β的代數(shù)式表示).6、已知:如圖,△ABC是任意一個三角形,求證:∠A+∠B+∠C=180°.7、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).-參考答案-一、單選題1、D【解析】【分析】先設(shè)三角形的兩個內(nèi)角分別為x,y,則可得第三個角(180°-x-y),再分三種情況討論,即可得到答案.【詳解】設(shè)三角形的一個內(nèi)角為x,另一個角為y,則第三個角為(180°-x-y),則有三種情況:①②③綜上所述,必有一個角等于90°故選D.【考點】本題考查三角形內(nèi)角和的性質(zhì),解題的關(guān)鍵是熟練掌握三角形內(nèi)角和的性質(zhì),分情況討論.2、B【解析】【分析】根據(jù)兩直線平行,可得∠BAD=∠ABE=20°,因為BE平分∠ABC,所以∠ABE=∠EBC=20°,所以得到∠ABC=40°,從而求出∠EAB=50°,根據(jù)三角形內(nèi)角和即可得到∠AEB的度數(shù).【詳解】解:∵BE∥AD∴∠BAD=∠ABE=20°∵BE平分∠ABC∴∠ABE=∠EBC=20°∴∠ABC=40°∵∠C=90°∴∠EAB=50°∴∠AEB=180°-∠EAB-∠ABE=180°-50°-20°=110°故選B.【考點】本題考查了平行線的性質(zhì),角平分線和三角形內(nèi)角和,能夠找出內(nèi)錯角以及熟悉三角形內(nèi)角和為180°是解決本題的關(guān)鍵.3、D【解析】【分析】先用∠A表示出∠B、∠C,再根據(jù)三角形的內(nèi)角和定理求出∠A、∠C得結(jié)論.【詳解】解:∵∠A:∠B:∠C=1:3:4,∴∠B=3∠A,∠C=4∠A.∵∠A+∠B+∠C=180,∴∠A+3∠A+4∠A=180.∴∠A=22.5.∴∠C=4∠A=4×22.5=90.故選:D.【考點】本題考查了三角形的內(nèi)角和定理,掌握“三角形的內(nèi)角和等于180”是解決本題的關(guān)鍵.4、B【解析】【分析】連接AC并延長交EF于點M.由平行線的性質(zhì)得,,再由等量代換得,先求出即可求出.【詳解】解:連接AC并延長交EF于點M.,,,,,,,故選B.【考點】本題主要考查了平行線的性質(zhì)以及三角形的內(nèi)角和定理,屬于基礎(chǔ)題型.5、B【解析】【分析】根據(jù)三角形內(nèi)角和定理得出∠A+∠B=110°,進而利用四邊形內(nèi)角和定理得出答案.【詳解】解:∵△ABC中,∠C=70°,∴∠A+∠B=180°-∠C,∴∠1+∠2=360°-110°=250°,故選:B.【考點】本題主要考查了多邊形內(nèi)角和定理,根據(jù)題意得出∠A+∠B的度數(shù)是解題關(guān)鍵.6、D【解析】【分析】根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.7、C【解析】【詳解】【分析】根據(jù)三角形的外角性質(zhì):①三角形的外角和為360°;②三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;③三角形的一個外角大于和它不相鄰的任何一個內(nèi)角,分別進行分析即可.【詳解】A、三角形的外角大于與它不相鄰的內(nèi)角,故A選項錯誤;B、三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和,故B選項錯誤;C、三角形的一個內(nèi)角小于和它不相鄰的任何一個外角,故C選項正確;D、三角形的外角和是360°,故D選項錯誤,故選C.【考點】本題主要考查了三角形的外角的性質(zhì),關(guān)鍵是熟練掌握性質(zhì)定理.8、B【解析】【分析】根據(jù)折疊∠A′=∠A,根據(jù)鄰補角性質(zhì)求出∠A′DA,再根據(jù)三角形外角性質(zhì)即可求解.【詳解】解:根據(jù)折疊可知∠A′=∠A,∵∠1=70°,∴∠A′DA=180°-∠1=110°,∴根據(jù)三角形外角∠A′=∠2-∠A′DA=152°-110°=42°,∴∠A=42°.故選B.【考點】本題考查折疊性質(zhì),鄰補角性質(zhì),三角形外角性質(zhì),掌握折疊性質(zhì),鄰補角性質(zhì),三角形外角性質(zhì)是解題關(guān)鍵.二、填空題1、55°【解析】【詳解】,,.2、【解析】【分析】由折疊的性質(zhì)可知:,再利用三角形內(nèi)角和定理及角之間的關(guān)系證明,,即可找出α與β之間的數(shù)量關(guān)系.【詳解】解:由折疊的性質(zhì)可知:,∵,∴,∴,∵,,∴,∴,故答案為:.【考點】本題考查折疊的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵是根據(jù)折疊的性質(zhì)求出,根據(jù)角之間的關(guān)系求出,.3、【解析】【分析】根據(jù)折疊得出∠D=∠B=28°,根據(jù)三角形的外角性質(zhì)得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【詳解】解:如圖,∵∠B=28°,將△ABC沿直線m翻折,點B落在點D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案為:.【考點】本題考查了三角形的外角性質(zhì)和折疊的性質(zhì),能熟記三角形的外角性質(zhì)是解此題的關(guān)鍵,注意:三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.4、45°##45°【解析】【分析】延長CH交AB于點F,銳角三角形三條高交于一點,所以CF⊥AB,再根據(jù)三角形內(nèi)角和定理得出答案.【詳解】解:延長CH交AB于點F,在△ABC中,三邊的高交于一點,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三內(nèi)角之和為180°,∴∠CHD=45°,故答案為:45°.【考點】本題考查三角形中,三條邊的高交于一點,且內(nèi)角和為180°.5、15【解析】【分析】根據(jù)直角三角板的特點,結(jié)合題意,通過角的轉(zhuǎn)換即可得結(jié)果;【詳解】解:如圖,∵∠ACB=∠EFD=90°,∠ABC=60°,∴∠A=30°,∵∠DEF=45°,AB∥DE,∴∠BGF=45°,∵∠A+∠AFD=∠BGF=45°,∴∠AFD=∠BGF-∠A=45°-30°=15°.故答案為:15.【考點】本題主要考查角的轉(zhuǎn)換、三角形的內(nèi)角和定理、平行線的性質(zhì),掌握三角形的內(nèi)角和定理、平行線的性質(zhì)是解題的關(guān)鍵.6、80【解析】【分析】由折疊的性質(zhì)可知:∠B=∠MGB,∠C=∠EGC,根據(jù)三角形的內(nèi)角和為180°,可求出∠B+∠C的度數(shù),進而得到∠MGB+∠EGC的度數(shù),問題得解.【詳解】解:∵線段MN、EF為折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=80°,∴∠B+∠C=180°﹣80°=100°,∴∠MGB+∠EGC=∠B+∠C=100°,∴∠MGE=180°﹣100°=80°,故答案為:80.【考點】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,解題的關(guān)鍵是利用整體思想得到∠MGB+∠EGC的度數(shù).7、40【解析】【詳解】由折疊可得∠EDC=90°,∠BED=∠FED,由角平分線和三角形內(nèi)角和得∠DEC=70°,再利用三角形外角的性質(zhì)可得答案.【解答】解:由折疊可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折疊可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性質(zhì)可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案為:40.【考點】本題考查圖形的折疊,熟知折疊前后圖形的形狀和大小相等、得到∠BED=∠DEF并利用三角形內(nèi)角和是解本題的關(guān)鍵,屬于常見題型.三、解答題1、見解析【解析】【分析】根據(jù),得到∠A=∠C,然后推出AF=CE,即可證明△ABF≌△CDE得到∠AFB=∠CED,則.【詳解】解:∵,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴.【考點】本題主要考查了全等三角形的性質(zhì)與判定,平行線的性質(zhì)與判定,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.2、(1)65°;(2)25°.【解析】【分析】(1)先根據(jù)直角三角形兩銳角互余求出∠ABC=90°﹣∠A=50°,由鄰補角定義得出∠CBD=130°.再根據(jù)角平分線定義即可求出∠CBE=∠CBD=65°;(2)先根據(jù)直角三角形兩銳角互余的性質(zhì)得出∠CEB=90°﹣65°=25°,再根據(jù)平行線的性質(zhì)即可求出∠F=∠CEB=25°.【詳解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分線,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【考點】本題考查了三角形內(nèi)角和定理,直角三角形兩銳角互余的性質(zhì),平行線的性質(zhì),鄰補角定義,角平分線定義.掌握各定義與性質(zhì)是解題的關(guān)鍵.3、(1)證明見解析;(2).【解析】【分析】(1)利用三角形內(nèi)角和定理求出,再利用折疊和角平分線的性質(zhì)證明,即可證明;(2)利用三角形內(nèi)角和定理求出,再利用對頂角相等證明,再利用三角形內(nèi)角和定理即可求出.(1)證明:∵,,∴,∵AE平分,∴,∵,∴,∴,∴,(2)解:,∴,∵,且,∴.【考點】本題考查三角形內(nèi)角和定理,折疊的性質(zhì),角平分線的性質(zhì),對頂角相等,(1)的關(guān)鍵是求出,證明;(2)的關(guān)鍵是求出.4、見解析.【解析】【分析】根據(jù)三角形內(nèi)角和定理結(jié)合已知條件求出∠A+∠C=180°即可得出結(jié)論.【詳解】解:∵,∴∠C=180°-(∠CED+∠D)=180°-∠A,∴∠A+∠C=180°,∴AB∥CD.【考點】本題考查了三角形內(nèi)角和定理以及平行線的判定,比較基礎(chǔ),熟練掌握相關(guān)性質(zhì)定理即可解題.5、(1)60°;(2)β-α.【解析】【分析】(1)根據(jù)平行線的性質(zhì)和平角的定義可得∠EBC=60°,∠AEF=60°,根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)可得∠EBD=∠BDE=∠DBC=30°,再根據(jù)三角形內(nèi)角和定理可求∠BAD的度數(shù);(2)過點A作AG∥BC,則∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.【詳解】解:(1)∵EF∥BC,∠BEF=120°,∴∠EBC=60°,∠AEF=60°,又∵BD平分∠EBC,∴∠EBD=∠BDE=∠DBC=30°,又∵∠BDA=90°,∴∠EDA=60°,∴∠BA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行升職面試題庫及答案
- 2025-2030中國直播電商生態(tài)體系構(gòu)建與變現(xiàn)能力評估報告
- 核反應(yīng)堆堆芯核物理實驗協(xié)調(diào)合同
- 面試視頻面試題目及答案
- 美術(shù)面試題目及答案高中
- 太空種植課件
- 2024-2025學(xué)年阿拉山口市某小學(xué)五年級下學(xué)期語文第一單元復(fù)習(xí)試卷
- 《義務(wù)教育歷史課程標(biāo)準(zhǔn)(2022年版)》解讀
- 2024-2025學(xué)年德陽市某小學(xué)二年級下學(xué)期語文第二單元復(fù)習(xí)試卷
- 2025年醫(yī)療器械臨床試驗GCP考核試題(含答案)
- 2025至2030中國污泥處理市場銷售模式與競爭格局分析報告
- 2025年電梯安全管理員試題及答案
- 二零二五年度抖音短視頻內(nèi)容創(chuàng)作者經(jīng)紀合作協(xié)議書下載
- 水庫藍線管理辦法
- 審計整改培訓(xùn)課件
- JC/T2647-2024預(yù)拌混凝土生產(chǎn)企業(yè)廢水回收利用規(guī)范
- 復(fù)雜子宮全切術(shù)后護理查房
- 2024職業(yè)病防治宣傳手冊
- 2025至2030中國煤制天然氣行業(yè)市場深度分析及發(fā)展前景與投資機會報告
- JJF(遼) 566-2025 重點排放單位碳計量審查規(guī)范 石油化工行業(yè)
- 極端天氣的應(yīng)急預(yù)案及措施篇五
評論
0/150
提交評論