四川省樂山市夾江中學(xué)2026屆中考一模數(shù)學(xué)試題含解析_第1頁
四川省樂山市夾江中學(xué)2026屆中考一模數(shù)學(xué)試題含解析_第2頁
四川省樂山市夾江中學(xué)2026屆中考一模數(shù)學(xué)試題含解析_第3頁
四川省樂山市夾江中學(xué)2026屆中考一模數(shù)學(xué)試題含解析_第4頁
四川省樂山市夾江中學(xué)2026屆中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省樂山市夾江中學(xué)2026屆中考一模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知正多邊形的一個外角為36°,則該正多邊形的邊數(shù)為().A.12 B.10 C.8 D.62.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數(shù)為()A.80° B.70° C.60° D.50°3.下列各運算中,計算正確的是()A. B.C. D.4.觀察下列圖中所示的一系列圖形,它們是按一定規(guī)律排列的,依照此規(guī)律,第2019個圖形共有()個〇.A.6055 B.6056 C.6057 D.60585.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.6.某一公司共有51名員工(包括經(jīng)理),經(jīng)理的工資高于其他員工的工資,今年經(jīng)理的工資從去年的200000元增加到225000元,而其他員工的工資同去年一樣,這樣,這家公司所有員工今年工資的平均數(shù)和中位數(shù)與去年相比將會()A.平均數(shù)和中位數(shù)不變 B.平均數(shù)增加,中位數(shù)不變C.平均數(shù)不變,中位數(shù)增加 D.平均數(shù)和中位數(shù)都增大7.下列汽車標志中,不是軸對稱圖形的是()A. B. C. D.8.計算-5x2-3x2的結(jié)果是()A.2x2 B.3x2 C.-8x2 D.8x29.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為直線x=,且經(jīng)過點(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是拋物線上的兩點,則y1<y2.其中說法正確的有()A.②③④ B.①②③ C.①④ D.①②④10.下列二次根式中,最簡二次根式的是()A. B. C. D.11.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側(cè)面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm12.如圖所示,從☉O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC,已知∠A=26°,則∠ACB的度數(shù)為()A.32° B.30° C.26° D.13°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△OAB中,C是AB的中點,反比例函數(shù)y=(k>0)在第一象限的圖象經(jīng)過A,C兩點,若△OAB面積為6,則k的值為_____.14.如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.15.將半徑為5,圓心角為144°的扇形圍成一個圈錐的側(cè)面,則這個圓錐的底面半徑為.16.已知三個數(shù)據(jù)3,x+3,3﹣x的方差為,則x=_____.17.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°18.如圖所示,三角形ABC的面積為1cm1.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長方形是()A.B.C.D.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知.(1)化簡A;(2)如果a,b是方程的兩個根,求A的值.20.(6分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設(shè)點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.21.(6分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關(guān)系,并說明理由.22.(8分)在抗洪搶險救災(zāi)中,某地糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到?jīng)]有受洪水威脅的A,B兩倉庫,已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為60噸,B庫的容量為120噸,從甲、乙兩庫到A、B兩庫的路程和運費如表(表中“元/噸?千米”表示每噸糧食運送1千米所需人民幣)路程(千米)運費(元/噸?千米)甲庫乙?guī)旒讕煲規(guī)霢庫20151212B庫2520108若從甲庫運往A庫糧食x噸,(1)填空(用含x的代數(shù)式表示):①從甲庫運往B庫糧食噸;②從乙?guī)爝\往A庫糧食噸;③從乙?guī)爝\往B庫糧食噸;(2)寫出將甲、乙兩庫糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關(guān)系式,并求出當從甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?23.(8分)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.24.(10分)如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點A(,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.25.(10分)某校為了解本校九年級男生體育測試中跳繩成績的情況,隨機抽取該校九年級若干名男生,調(diào)查他們的跳繩成績(次/分),按成績分成,,,,五個等級.將所得數(shù)據(jù)繪制成如下統(tǒng)計圖.根據(jù)圖中信息,解答下列問題:該校被抽取的男生跳繩成績頻數(shù)分布直方圖(1)本次調(diào)查中,男生的跳繩成績的中位數(shù)在________等級;(2)若該校九年級共有男生400人,估計該校九年級男生跳繩成績是等級的人數(shù).26.(12分)如圖,內(nèi)接于,,的延長線交于點.(1)求證:平分;(2)若,,求和的長.27.(12分)如圖,已知點E,F(xiàn)分別是?ABCD的對角線BD所在直線上的兩點,BF=DE,連接AE,CF,求證:CF=AE,CF∥AE.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

利用多邊形的外角和是360°,正多邊形的每個外角都是36°,即可求出答案.【詳解】解:360°÷36°=10,所以這個正多邊形是正十邊形.故選:B.【點睛】本題主要考查了多邊形的外角和定理.是需要識記的內(nèi)容.2、B【解析】

直接利用平行線的性質(zhì)得出∠4的度數(shù),再利用對頂角的性質(zhì)得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點睛】此題主要考查了平行線的性質(zhì),正確得出∠4的度數(shù)是解題關(guān)鍵.3、D【解析】

利用同底數(shù)冪的除法法則、同底數(shù)冪的乘法法則、冪的乘方法則以及完全平方公式即可判斷.【詳解】A、,該選項錯誤;B、,該選項錯誤;C、,該選項錯誤;D、,該選項正確;故選:D.【點睛】本題考查了同底數(shù)冪的乘法、除法法則,冪的乘方法則以及完全平方公式,正確理解法則是關(guān)鍵.4、D【解析】

設(shè)第n個圖形有a個O(n為正整數(shù)),觀察圖形,根據(jù)各圖形中O的個數(shù)的變化可找出"a=1+3n(n為正整數(shù))",再代入a=2019即可得出結(jié)論【詳解】設(shè)第n個圖形有an個〇(n為正整數(shù)),觀察圖形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴an=1+3n(n為正整數(shù)),∴a2019=1+3×2019=1.故選:D.【點睛】此題考查規(guī)律型:圖形的變化,解題關(guān)鍵在于找到規(guī)律5、D【解析】

本題關(guān)鍵是正確分析出所剪時的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時,虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項.【點睛】本題考查了平面圖形在實際生活中的應(yīng)用,有良好的空間想象能力過動手能力是解題關(guān)鍵.6、B【解析】

本題考查統(tǒng)計的有關(guān)知識,找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).【詳解】解:設(shè)這家公司除經(jīng)理外50名員工的工資和為a元,則這家公司所有員工去年工資的平均數(shù)是元,今年工資的平均數(shù)是元,顯然;

由于這51個數(shù)據(jù)按從小到大的順序排列的次序完全沒有變化,所以中位數(shù)不變.

故選B.【點睛】本題主要考查了平均數(shù),中位數(shù)的概念,要掌握這些基本概念才能熟練解題.同時注意到個別數(shù)據(jù)對平均數(shù)的影響較大,而對中位數(shù)和眾數(shù)沒影響.7、C【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.8、C【解析】

利用合并同類項法則直接合并得出即可.【詳解】解:故選C.【點睛】此題主要考查了合并同類項,熟練應(yīng)用合并同類項法則是解題關(guān)鍵.9、D【解析】

根據(jù)圖象得出a<0,a+b=0,c>0,即可判斷①②;把x=2代入拋物線的解析式即可判斷③,根據(jù)(-2,y1),(,y2)到對稱軸的距離即可判斷④.【詳解】∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=,∴a=-b,∴b>0,∴abc<0,故①正確;∵a=-b,∴a+b=0,故②正確;把x=2代入拋物線的解析式得,4a+2b+c=0,故③錯誤;∵,故④正確;故選D..【點睛】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系的應(yīng)用,題目比較典型,主要考查學(xué)生的理解能力和辨析能力.10、C【解析】

判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項錯誤;故選C.考點:最簡二次根式.11、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案。【詳解】直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設(shè)每個圓錐容器的地面半徑為解得故答案選A.【點睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。12、A【解析】

連接OB,根據(jù)切線的性質(zhì)和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質(zhì)可得∠C=∠OBC,根據(jù)三角形外角的性質(zhì)即可求得∠ACB的度數(shù).【詳解】連接OB,∵AB與☉O相切于點B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點睛】本題考查了切線的性質(zhì),利用切線的性質(zhì),結(jié)合三角形外角的性質(zhì)求出角的度數(shù)是解決本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解析】

分別過點、點作的垂線,垂足分別為點、點,根據(jù)是的中點得到為的中位線,然后設(shè),,,根據(jù),得到,最后根據(jù)面積求得,從而求得.【詳解】分別過點、點作的垂線,垂足分別為點、點,如圖點為的中點,為的中位線,,,,,,,,,.故答案為:.【點睛】本題考查了反比例函數(shù)的比例系數(shù)的幾何意義及三角形的中位線定理,關(guān)鍵是正確作出輔助線,掌握在反比例函數(shù)的圖象上任意一點象坐標軸作垂線,這一點和垂足以及坐標原點所構(gòu)成的三角形的面積是,且保持不變.14、1【解析】

利用△ACD∽△CBD,對應(yīng)線段成比例就可以求出.【詳解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【點睛】本題考查了相似三角形的性質(zhì)和判定,熟練掌握相似三角形的判定方法是關(guān)鍵.15、1【解析】考點:圓錐的計算.分析:求得扇形的弧長,除以1π即為圓錐的底面半徑.解:扇形的弧長為:=4π;這個圓錐的底面半徑為:4π÷1π=1.點評:考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.16、±1【解析】

先由平均數(shù)的計算公式求出這組數(shù)據(jù)的平均數(shù),再代入方差公式進行計算,即可求出x的值.【詳解】解:這三個數(shù)的平均數(shù)是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【點睛】本題考查方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.17、B【解析】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.18、B【解析】

過P點作PE⊥BP,垂足為P,交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.【詳解】解:過P點作PE⊥BP,垂足為P,交BC于E,∵AP垂直∠B的平分線BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面積=三角形ABC的面積=cm1,選項中只有B的長方形面積為cm1,故選B.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)-.【解析】

(1)先通分,再根據(jù)同分母的分式相加減求出即可;(2)根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】(1)A=﹣==;(2)∵a,b是方程的兩個根,∴a+b=4,ab=-12,∴.【點睛】本題考查了分式的加減和根與系數(shù)的關(guān)系,能正確根據(jù)分式的運算法則進行化簡是解答此題的關(guān)鍵.20、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】

(1)由點A、B坐標利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點P的坐標為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當1<m<6時,由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當m>6時,同理可得.【詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點B作BH⊥CD于點H,交CP于點K,連接AK.易得四邊形OBHC是正方形.應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點K(1,),設(shè)直線CK的解析式為y=hx+1,將點K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設(shè)點P的坐標為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點P的坐標為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點D(6,1),根據(jù)題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)及勾股定理、三角函數(shù)等知識點.21、(1)見解析;(1)見解析.【解析】

(1)由全等三角形的判定定理AAS證得結(jié)論.(1)由(1)中全等三角形的對應(yīng)邊相等推知點E是邊DF的中點,∠1=∠1;根據(jù)角平分線的性質(zhì)、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質(zhì)推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點E是AB邊的中點,∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點E是DF的中點,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.22、(1)①(100﹣x);②(1﹣x);③(20+x);(2)從甲庫運往A庫1噸糧食,從甲庫運往B庫40噸糧食,從乙?guī)爝\往B庫80噸糧食時,總運費最省,最省的總運費是2元.【解析】分析:(Ⅰ)根據(jù)題意解答即可;(Ⅱ)弄清調(diào)動方向,再依據(jù)路程和運費列出y(元)與x(噸)的函數(shù)關(guān)系式,最后可以利用一次函數(shù)的增減性確定“最省的總運費”.詳解:(Ⅰ)設(shè)從甲庫運往A庫糧食x噸;①從甲庫運往B庫糧食(100﹣x)噸;②從乙?guī)爝\往A庫糧食(1﹣x)噸;③從乙?guī)爝\往B庫糧食(20+x)噸;故答案為(100﹣x);(1﹣x);(20+x).(Ⅱ)依題意有:若甲庫運往A庫糧食x噸,則甲庫運到B庫(100﹣x)噸,乙?guī)爝\往A庫(1﹣x)噸,乙?guī)爝\到B庫(20+x)噸.則,解得:0≤x≤1.從甲庫運往A庫糧食x噸時,總運費為:y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]=﹣30x+39000;∵從乙?guī)爝\往A庫糧食(1﹣x)噸,∴0≤x≤1,此時100﹣x>0,∴y=﹣30x+39000(0≤x≤1).∵﹣30<0,∴y隨x的增大而減小,∴當x=1時,y取最小值,最小值是2.答:從甲庫運往A庫1噸糧食,從甲庫運往B庫40噸糧食,從乙?guī)爝\往B庫80噸糧食時,總運費最省,最省的總運費是2元.點睛:本題是一次函數(shù)與不等式的綜合題,先解不等式確定自變量的取值范圍,然后依據(jù)一次函數(shù)的增減性來確定“最佳方案”.23、(1);(2)∠CDE=2∠A.【解析】

(1)在Rt△ABC中,由勾股定理得到AB的長,從而得到半徑AO.再由△AOE∽△ACB,得到OE的長;(2)連結(jié)OC,得到∠1=∠A,再證∠3=∠CDE,從而得到結(jié)論.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:連結(jié)OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考點:切線的性質(zhì);探究型;和差倍分.24、(1);(2),;(3)【解析】試題分析:(1)根據(jù)反比例函數(shù)圖象上點的坐標特征易得k=2;(2)作BH⊥AD于H,如圖1,根據(jù)反比例函數(shù)圖象上點的坐標特征確定B點坐標為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據(jù)特殊角的三角函數(shù)值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計算出CD=2,易得C點坐標為(0,﹣1),于是可根據(jù)待定系數(shù)法求出直線AC的解析式為y=x﹣1;(3)利用M點在反比例函數(shù)圖象上,可設(shè)M點坐標為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點N,得到N點的橫坐標為t,利用一次函數(shù)圖象上點的坐標特征得到N點坐標為(t,t﹣1),則MN=﹣t+1,根據(jù)三角形面積公式得到S△CMN=?t?(﹣t+1),再進行配方得到S=﹣(t﹣)2+(0<t<2),最后根據(jù)二次函數(shù)的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數(shù)解析式y(tǒng)=,得a=2,∴B點坐標為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點坐標為(0,﹣1),設(shè)直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設(shè)M點坐標為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點N,∴N點的橫坐標為t,∴N點坐標為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當t=時,S有最大值,最大值為.25、(1)C;(2)100【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論