




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津南開大附屬中7年級數(shù)學下冊第四章三角形專項攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列長度的三條線段能組成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,72、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個,可使△ABC≌△BAD.可選的條件個數(shù)為()A.1 B.2 C.3. D.43、下列各組線段中,能構(gòu)成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、64、下列各組圖形中,是全等形的是()A.兩個含30°角的直角三角形B.一個鈍角相等的兩個等腰三角形C.邊長為5和6的兩個等腰三角形D.腰對應(yīng)相等的兩個等腰直角三角形5、如圖,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,則需要添加的條件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D6、如圖,點O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,則OC的長為()A.3 B.4 C.5 D.67、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56118、已知線段AB=9cm,AC=5cm,下面有四個說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號是()A.①② B.③④ C.①②④ D.①②③④9、已知三角形的兩邊長分別為2cm和3cm,則第三邊長可能是()A.6cm B.5cm C.3cm D.1cm10、如圖,平分,,連接,并延長,分別交,于點,,則圖中共有全等三角形的組數(shù)為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、一個零件的形狀如圖,按規(guī)定∠A=90°,∠B=∠D=25°,判斷這個零件是否合格,只要檢驗∠BCD的度數(shù)就可以了.量得∠BCD=150°,這個零件______(填“合格”不合格”).2、如圖,,則的長為________.3、如圖,在長方形ABCD中,,.延長BC到點E,使,連結(jié)DE,動點P從點B出發(fā),以每秒2個單位長度的速度沿向終點A運動.設(shè)點P的運動時間為t秒,當t的值為______________時,和全等.4、已知a,b,c是△ABC的三邊,化簡:|a+b-c|+|b-a-c|=________.5、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.6、如圖,,,,則、兩點之間的距離為______.7、已知a,b,c是的三條邊長,化簡的結(jié)果為_______.8、如圖,AB=DE,AC=DF,BF=CE,點B、F、C、E在一條直線上,AB=4,EF=6,求△ABC中AC邊的取值范圍.9、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點P,則△ABC的面積為_____cm2.10、邊長為1的小正方形組成如圖所示的6×6網(wǎng)格,點A,B,C,D,E,F(xiàn),G,H都在格點上.其中到四邊形ABCD四個頂點距離之和最小的點是_________.三、解答題(6小題,每小題10分,共計60分)1、如圖,CE⊥AB于點E,BF⊥AC于點F,BD=CD.(1)求證:△BDE≌△CDF;(2)求證:AE=AF.2、如圖,BM、CN都是?ABC的高,且BP﹦AC,CQ﹦AB,請?zhí)骄緼P與AQ的數(shù)量關(guān)系,并說明理由.3、已知的三邊長分別為a,b,c.若a,b,c滿足,試判斷的形狀.4、如圖,在△ABC中,D為BC的中點,過D點的直線GF交AC于點F,交AC的平行線BG于點G,DE⊥GF,并交AB于點E,連接EG,EF.(1)求證:BG=CF.(2)請你猜想BE+CF與EF的大小關(guān)系,并說明理由.5、證明“全等三角形的對應(yīng)角的平分線相等”.要求:將已有圖形根據(jù)題意補充完整,并據(jù)此寫出己知、求證和證明過程.6、如圖,,,求證:.-參考答案-一、單選題1、C【分析】根據(jù)組成三角形的三邊關(guān)系依次判斷即可.【詳解】A、3,4,7中3+4=7,故不能組成三角形,與題意不符,選項錯誤.B、3,4,8中3+4<8,故不能組成三角形,與題意不符,選項錯誤.C、3,4,5中任意兩邊之和都大于第三邊,任意兩邊之差都小于第三邊,故能組成三角形,符合題意,選項正確.D、3,3,7中3+3<7,故不能組成三角形,與題意不符,選項錯誤.故選:C.【點睛】本題考查了三角形的三邊關(guān)系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.2、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個數(shù)有4個故選:D【點睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.3、C【分析】根據(jù)三角形的三邊關(guān)系定理逐項判斷即可得.【詳解】解:三角形的三邊關(guān)系定理:任意兩邊之和大于第三邊.A、,不能構(gòu)成三角形,此項不符題意;B、,不能構(gòu)成三角形,此項不符題意;C、,能構(gòu)成三角形,此項符合題意;D、,不能構(gòu)成三角形,此項不符題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握三角形的三邊關(guān)系定理是解題關(guān)鍵.4、D【分析】根據(jù)兩個三角形全等的條件依據(jù)三角形全等判定方法SSS,SAS,AAS,SAS,HL逐個判斷得結(jié)論.【詳解】解:A、兩個含30°角的直角三角形,缺少對應(yīng)邊相等,故選項A不全等;B、一個鈍角相等的兩個等腰三角形.缺少對應(yīng)邊相等,故選項B不全等;C、腰為5底為6的三角形和腰為6底為5的三角形不全等,故選項C不全等;D、腰對應(yīng)相等,頂角是直角的兩個三角形滿足“邊角邊”,故選項D是全等形.故選:D.【點睛】本題主要考查了三角形全等的判定方法;需注意:判定兩個三角形全等時,必須有邊的參與,還要找準對應(yīng)關(guān)系.5、B【分析】利用全等三角形的判定方法對各選項進行判斷.【詳解】解:∵AC=BD,而AB為公共邊,A、當∠BAD=∠ABC時,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;B、當∠BAC=∠ABD時,根據(jù)“SAS”可判斷△ABC≌△BAD,該選項符合題意;C、當∠DAC=∠CBD時,由三角形內(nèi)角和定理可推出∠D=∠C,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;D、同理,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;故選:B.【點睛】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.6、C【分析】證明△AOB≌△COD推出OB=OD,OA=OC,即可解決問題.【詳解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故選C.【點睛】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.7、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對各選項分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項不符合題意;C.∵5+6>10,∴能組成三角形,故本選項符合題意;D.∵5+6=11,∴不能組成三角形,故本選項不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.8、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結(jié)合線段的和差以及三角形三邊的關(guān)系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點睛】此題主要考查了三角形三邊關(guān)系,線段之間的關(guān)系,正確分類討論是解題關(guān)鍵.9、C【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.【詳解】解:設(shè)第三邊長為xcm,根據(jù)三角形的三邊關(guān)系可得:3-2<x<3+2,解得:1<x<5,只有C選項在范圍內(nèi).故選:C.【點睛】本題考查了三角形的三邊關(guān)系,關(guān)鍵是掌握第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和.10、C【分析】求出∠BAD=∠CAD,根據(jù)SAS推出△ADB≌△ADC,根據(jù)全等三角形的性質(zhì)得出∠B=∠C,∠ADB=∠ADC,求出∠ADE=∠ADF,根據(jù)ASA推出△AED≌△AFD,根據(jù)全等三角形的性質(zhì)得出AE=AF,根據(jù)SAS推出△ABF≌△ACE,根據(jù)AAS推出△EDB≌△FDC即可.【詳解】解:圖中全等三角形的對數(shù)有4對,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB?∠EDB=∠ADC?∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故選:C.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能綜合運用定理進行推理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應(yīng)邊相等,對應(yīng)角相等.二、填空題1、不合格【分析】連接AC并延長,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可進行判定.【詳解】解:如圖,連接AC并延長,由三角形的外角性質(zhì)可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴這個零件不合格.故答案為:不合格.【點睛】本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出兩個三角形是解題的關(guān)鍵.2、3【分析】根據(jù),可得到,再由,可得,從而得到,即可求解.【詳解】解:∵,∴,∵,∴,即,∴,∴.故答案為:3【點睛】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.3、1或7【分析】分兩種情況進行討論,根據(jù)題意得出BP=2t=2或AP=16-2t=2即可求得結(jié)果.【詳解】解:當點P在BC上時,∵AB=CD,∴當△ABP≌△DCE,得到BP=CE,由題意得:BP=2t=2,∴t=1,當P在AD上時,∵AB=CD,∴當△BAP≌△DCE,得到AP=CE,由題意得:AP=6+6-4﹣2t=2,解得t=7.∴當t的值為1或7秒時.△ABP和△DCE全等.故答案為:1或7.【點睛】本題考查了全等三角形的判定,解題的關(guān)鍵在于能夠利用分類討論的思想進行求解.4、【分析】首先利用三角形的三邊關(guān)系得出,然后根據(jù)求絕對值的法則進行化簡即可.【詳解】解:∵是的三條邊,∴,∴=.故答案為:.【點睛】熟悉三角形的三邊關(guān)系和求絕對值的法則,是解題的關(guān)鍵,注意,去絕對值后,要先添加括號,再去括號,這樣不容易出錯.|a+b-c|+|b-a-c|5、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.6、55【分析】根據(jù)題意首先證明△AOB和△DOC全等,再根據(jù)全等三角形對應(yīng)邊相等即可得出答案.【詳解】解:,,,即,在和中,,≌,.故答案為:.【點睛】本題主要考查全等三角形的應(yīng)用以及兩點之間的距離,解題的關(guān)鍵是掌握全等三角形對應(yīng)邊相等.7、2b【分析】由題意根據(jù)三角形三邊關(guān)系得到a+b-c>0,b-a-c<0,再去絕對值,合并同類項即可求解.【詳解】解:∵a,b,c是的三條邊長,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案為:2b.【點睛】本題考查的是三角形的三邊關(guān)系以及去絕對值和整式加減運算,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.8、2<AC<10【分析】由BF=CE得到BC=EF=6,再根據(jù)三角形三邊關(guān)系求解即可.【詳解】解:∵BF=CE,點B、F、C、E在一條直線上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC邊的取值范圍為2<AC<10.【點睛】本題考查三角形的三邊關(guān)系,熟知一個三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答的關(guān)鍵.9、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質(zhì)得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:等底等高的三角形的面積相等.10、E【分析】到四邊形ABCD四個頂點距離之和最小的點是對角線的交點,連接對角線,直接判斷即可.【詳解】如圖所示,連接BD、AC、GA、GB、GC、GD,∵,,∴到四邊形ABCD四個頂點距離之和最小是,該點為對角線的交點,根據(jù)圖形可知,對角線交點為E,故答案為:E.【點睛】本題考查了三角形三邊關(guān)系,解題關(guān)鍵是通過連接輔助線,運用三角形三邊關(guān)系判斷點的位置.三、解答題1、(1)見解析;(2)見解析【分析】(1)根據(jù)CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出結(jié)論;(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出結(jié)論.【詳解】證明:(1)∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS);(2)∵△BED≌△CFD,∴DE=DF,∴BD+DF=CD+DE,∴BF=CE,在△ABF和△ACE中,,∴△ABF≌△ACE(AAS),∴AE=AF.【點睛】本題考查了垂直的性質(zhì)的運用,全等三角形的判定與性質(zhì)的運用,等式的性質(zhì)的運用,解答時證明三角形全等是關(guān)鍵.2、AP=AQ,理由見詳解【分析】由題意易得∠BNP=∠CMP=90°,則有∠ABP+∠BPN=∠QCA+∠MPC=90°,然后可得∠ABP=∠QCA,進而可證△ABP≌△QCA,最后問題可求解.【詳解】解:AP=AQ,理由如下:∵BM、CN都是?ABC的高,∴∠BNP=∠CMP=90°,∴∠ABP+∠BPN=∠QCA+∠MPC=90°,∵∠BPN=∠MPC,∴∠ABP=∠QCA,在△ABP和△QCA中,,∴△ABP≌△QCA(SAS),∴AP=AQ.【點睛】本題主要考查三角形的高線、直角三角形的性質(zhì)及全等三角形的性質(zhì)與判定,熟練掌握三角形的高線、直角三角形的性質(zhì)及全等三角形的性質(zhì)與判定是解題的關(guān)鍵.3、的形狀是等邊三角形.【分析】利用平方數(shù)的非負性,求解a,b,c的關(guān)系,進而判斷.【詳解】解:∵,∴,∴a=b=c,∴是等邊三角形.【點睛】本題主要是考查了三角形的分類,熟練掌握各類三角形的特點,例如三邊相等為等邊三角形,含的三角形為直角三角形等,這是解決此類題的關(guān)鍵.4、(1)見解析;(2)BE+CF>EF.見解析【分析】(1)利用平行關(guān)系以及BC的中點,求證△CFD≌△BGD,進而證明B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年病歷書寫基本綜合規(guī)范試題及答案
- 2025年城市輕軌項目鉆孔樁基礎(chǔ)施工與運營管理服務(wù)協(xié)議
- 2025年跨境電商倉儲物流綜合服務(wù)采購合同
- 西安電子科技大學長安學院《建筑項目招投標與合同管理》2024-2025學年第一學期期末試卷
- 2024陜西西部計劃筆試參考題及答案
- 浙江藝術(shù)職業(yè)學院《體育教材教法》2024-2025學年第一學期期末試卷
- 廣州軟件學院《園藝植物保護學》2024-2025學年第一學期期末試卷
- 憲法監(jiān)督公開課課件
- 桐鄉(xiāng)市國有企業(yè)招聘筆試真題2024
- 室外消防基礎(chǔ)知識培訓課件
- 2025年發(fā)展對象考試題題庫及答案
- 2025北京廣播電視臺校園招聘17人筆試備考題庫及參考答案詳解
- 征兵體檢心理測試題及答案
- 2025年陜西綜合評標評審專家?guī)炜荚嚱?jīng)典試題及答案三-陜西評標評審專家
- 水泥混凝土路面施工技術(shù)
- DB11T 1481-2024 生產(chǎn)經(jīng)營單位安全事故應(yīng)急預案評審規(guī)范
- 調(diào)車作業(yè)培訓課件
- 2025年杭州市檢察機關(guān)招錄聘用制書記員考試筆試試題(含答案)
- 2025年應(yīng)急管理普法知識競賽題(附答案)
- 2024年重慶雙江航運發(fā)展有限公司招聘真題
- 信任機制構(gòu)建-洞察及研究
評論
0/150
提交評論