浙江省樂清市虹橋鎮(zhèn)第六中學(xué)2026屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
浙江省樂清市虹橋鎮(zhèn)第六中學(xué)2026屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
浙江省樂清市虹橋鎮(zhèn)第六中學(xué)2026屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
浙江省樂清市虹橋鎮(zhèn)第六中學(xué)2026屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
浙江省樂清市虹橋鎮(zhèn)第六中學(xué)2026屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省樂清市虹橋鎮(zhèn)第六中學(xué)2026屆中考數(shù)學(xué)考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.52.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負數(shù) D.負數(shù)3.下列四個圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4.已知不透明的袋中只裝有黑、白兩種球,這些球除顏色外都相同,其中白球有30個,黑球有n個.隨機地從袋中摸出一個球,記錄下顏色后,放回袋子中并搖勻,再從中摸出一個球,經(jīng)過如此大量重復(fù)試驗,發(fā)現(xiàn)摸出的黑球的頻率穩(wěn)定在0.4附近,則n的值約為()A.20 B.30 C.40 D.505.在如圖的計算程序中,y與x之間的函數(shù)關(guān)系所對應(yīng)的圖象大致是()A. B. C. D.6.如圖,扇形AOB中,OA=2,C為弧AB上的一點,連接AC,BC,如果四邊形AOBC為菱形,則圖中陰影部分的面積為()A. B. C. D.7.四組數(shù)中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互為倒數(shù)的是()A.①② B.①③ C.①④ D.①③④8.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結(jié)論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤9.如圖,已知,那么下列結(jié)論正確的是()A. B. C. D.10.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.2二、填空題(共7小題,每小題3分,滿分21分)11.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機取出個球,則它是黑球的概率是_____.12.已知,那么__.13.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.14.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉(zhuǎn),使點C旋轉(zhuǎn)到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm1.(結(jié)果保留π).15.化簡:_____________.16.如圖,在中,于點,于點,為邊的中點,連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時,.請將正確結(jié)論的序號填在橫線上__.17.如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點B恰好落在邊AC上,與點B′重合,AE為折痕,則EB′=_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,點G是正方形ABCD對角線CA的延長線一點,對角線BD與AC交于點O,以線段AG為邊作一個正方形AEFG,連接EB、GD.(1)求證:EB=GD;(2)若AB=5,AG=2,求EB的長.19.(5分)某初中學(xué)校舉行毛筆書法大賽,對各年級同學(xué)的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:請將條形統(tǒng)計圖補全;獲得一等獎的同學(xué)中有來自七年級,有來自八年級,其他同學(xué)均來自九年級,現(xiàn)準備從獲得一等獎的同學(xué)中任選兩人參加市內(nèi)毛筆書法大賽,請通過列表或畫樹狀圖求所選出的兩人中既有七年級又有九年級同學(xué)的概率.20.(8分)已知x1﹣1x﹣1=1.求代數(shù)式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.21.(10分)光華農(nóng)機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農(nóng)機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區(qū)18001600B地區(qū)16001200(1)設(shè)派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關(guān)系式,并寫出x的取值范圍;(2)若使農(nóng)機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設(shè)計出來;(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農(nóng)機租賃公司提一條合理化建議.22.(10分)解不等式組23.(12分)在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結(jié)論.24.(14分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對有關(guān)于四邊形的性質(zhì)的知識有一系統(tǒng)的掌握.2、A【解析】

根據(jù)絕對值的性質(zhì)進行求解即可得.【詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【點睛】本題考查了絕對值的性質(zhì),熟練掌握絕對值的性質(zhì)是解題的關(guān)鍵.絕對值的性質(zhì):一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.3、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形,故此選項正確.故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、A【解析】分析:根據(jù)白球的頻率穩(wěn)定在0.4附近得到白球的概率約為0.4,根據(jù)白球個數(shù)確定出總個數(shù),進而確定出黑球個數(shù)n.詳解:根據(jù)題意得:,

計算得出:n=20,

故選A.

點睛:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.5、A【解析】函數(shù)→一次函數(shù)的圖像及性質(zhì)6、D【解析】連接OC,過點A作AD⊥CD于點D,四邊形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等邊三角形,可得∠AOC=∠BOC=60°,故△ACO與△BOC為邊長相等的兩個等邊三角形,再根據(jù)銳角三角函數(shù)的定義得出AD=OA?sin60°=2×=,因此可求得S陰影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.故選D.點睛:本題考查的是扇形面積的計算,熟記扇形的面積公式及菱形的性質(zhì)是解答此題的關(guān)鍵.7、C【解析】

根據(jù)倒數(shù)的定義,分別進行判斷即可得出答案.【詳解】∵①1和1;1×1=1,故此選項正確;②-1和1;-1×1=-1,故此選項錯誤;③0和0;0×0=0,故此選項錯誤;④?和?1,-×(-1)=1,故此選項正確;∴互為倒數(shù)的是:①④,故選C.【點睛】此題主要考查了倒數(shù)的概念及性質(zhì).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).8、C【解析】

根據(jù)二次函數(shù)的性質(zhì)逐項分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關(guān)系:a<0,b<0,c>0,則①當(dāng)x=1時,y=a+b+c<0,正確;②當(dāng)x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結(jié)論的序號是①②③⑤.故選C9、A【解析】

已知AB∥CD∥EF,根據(jù)平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準對應(yīng)關(guān)系,避免錯選其他答案.10、B【解析】本題考查的圓與直線的位置關(guān)系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因為弦EF∥AB所以O(shè)C垂直EF故∠OEF=30°所以EF=OE=2.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機取出1個球,則它是黑球的概率是:故答案為:.【點睛】本題主要考查概率的求法與運用,解決本題的關(guān)鍵是要熟練掌握概率的定義和求概率的公式.12、【解析】

根據(jù)比例的性質(zhì),設(shè)x=5a,則y=2a,代入原式即可求解.【詳解】解:∵,∴設(shè)x=5a,則y=2a,那么.故答案為:.【點睛】本題主要考查了比例的性質(zhì),根據(jù)比例式用同一個未知數(shù)得出的值進而求解是解題關(guān)鍵.13、1.【解析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點:等腰直角三角形;平行線的性質(zhì).14、9π【解析】

根據(jù)直角三角形兩銳角互余求出∠BAC=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求出陰影部分的面積=S扇形ABE﹣S扇形BCD,列計算即可得解.【詳解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以點B為中心順時針旋轉(zhuǎn)得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴陰影部分的面積=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案為9π.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),扇形的面積計算,直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),求出陰影部分的面積等于兩個扇形的面積的差是解題的關(guān)鍵.15、【解析】

根據(jù)分式的運算法則即可求解.【詳解】原式=.故答案為:.【點睛】此題主要考查分式的運算,解題的關(guān)鍵是熟知分式的運算法則.16、①③④【解析】

①根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;③先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABM=∠ACN=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個角是60°的等腰三角形是等邊三角形可判斷③;④當(dāng)∠ABC=45°時,∠BCN=45°,進而判斷④.【詳解】①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯誤;③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當(dāng)∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點,可得BC=PB=PC,故④正確.所以正確的選項有:①③④故答案為①③④【點睛】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質(zhì),相似三角形、等邊三角形、等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),仔細分析圖形并熟練掌握性質(zhì)是解題的關(guān)鍵.17、1.5【解析】在Rt△ABC中,,∵將△ABC折疊得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.設(shè)B′E=BE=x,則CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2);【解析】

(1)根據(jù)正方形的性質(zhì)得到∠GAD=∠EAB,證明△GAD≌△EAB,根據(jù)全等三角形的性質(zhì)證明;(2)根據(jù)正方形的性質(zhì)得到BD⊥AC,AC=BD=5,根據(jù)勾股定理計算即可.【詳解】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,,∴△GAD≌△EAB,∴EB=GD;(2)∵四邊形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5,∴∠DOG=90°,OA=OD=BD=,∵AG=2,∴OG=OA+AG=,由勾股定理得,GD==,∴EB=.【點睛】本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì),掌握正方形的對角線相等、垂直且互相平分是解題的關(guān)鍵.19、(1)答案見解析;(2).【解析】【分析】(1)根據(jù)參與獎有10人,占比25%可求得獲獎的總?cè)藬?shù),用總?cè)藬?shù)減去二等獎、三等獎、鼓勵獎、參與獎的人數(shù)可求得一等獎的人數(shù),據(jù)此補全條形圖即可;(2)根據(jù)題意分別求出七年級、八年級、九年級獲得一等獎的人數(shù),然后通過列表或畫樹狀圖法進行求解即可得.【詳解】(1)10÷25%=40(人),獲一等獎人數(shù):40-8-6-12-10=4(人),補全條形圖如圖所示:(2)七年級獲一等獎人數(shù):4×=1(人),八年級獲一等獎人數(shù):4×=1(人),∴九年級獲一等獎人數(shù):4-1-1=2(人),七年級獲一等獎的同學(xué)用M表示,八年級獲一等獎的同學(xué)用N表示,九年級獲一等獎的同學(xué)用P1、P2表示,樹狀圖如下:共有12種等可能結(jié)果,其中獲得一等獎的既有七年級又有九年級人數(shù)的結(jié)果有4種,則所選出的兩人中既有七年級又有九年級同學(xué)的概率P=.【點評】此題考查了統(tǒng)計與概率綜合,理解扇形統(tǒng)計圖與條形統(tǒng)計圖的意義及列表法或樹狀圖法是解題關(guān)鍵.20、2.【解析】

將原式化簡整理,整體代入即可解題.【詳解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【點睛】本題考查了代數(shù)式的化簡求值,屬于簡單題,整體代入是解題關(guān)鍵.21、(1)y=200x+74000(10≤x≤30)(2)有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高.【解析】

(1)根據(jù)題意和表格中的數(shù)據(jù)可以得到y(tǒng)關(guān)于x的函數(shù)關(guān)系式;

(2)根據(jù)題意可以得到相應(yīng)的不等式,從而可以解答本題;

(3)根據(jù)(1)中的函數(shù)解析式和一次函數(shù)的性質(zhì)可以解答本題.【詳解】解:(1)設(shè)派往A地區(qū)x臺乙型聯(lián)合收割機,則派往B地區(qū)x臺乙型聯(lián)合收割機為(30﹣x)臺,派往A、B地區(qū)的甲型聯(lián)合收割機分別為(30﹣x)臺和(x﹣10)臺,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由題意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x為整數(shù),∴x=28、29、30,∴有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高,理由:∵y=200x+74000中y隨x的增大而增大,∴當(dāng)x=30時,y取得最大值,此時y=80000,∴派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高.【點睛】本題考查一次函數(shù)的性質(zhì),解題關(guān)鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)和不等式的性質(zhì)解答.22、﹣1≤x<1.【解析】

分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.【詳解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,則不等式組的解集為﹣1≤x<1.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關(guān)鍵.23、(1)證明見解析;(2)△APQ是等邊三角形.【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,再根據(jù)SAS證明△ABP≌△ACQ;(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.【點睛】本題考查了全等三角形的判定,考查了全等三角形對應(yīng)邊相等的性質(zhì),考查了正三角形的判定,本題中求證,△ABP≌△ACQ是解題的關(guān)鍵.24、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論