




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省陽江市江城區(qū)2026屆畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°2.下列圖形是中心對稱圖形的是()A. B. C. D.3.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球,每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后再放回盒子,通過大量重復(fù)摸球?qū)嶒灪蟀l(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在30%,那么估計盒子中小球的個數(shù)n為()A.20 B.24 C.28 D.304.下列計算結(jié)果是x5的為()A.x10÷x2B.x6﹣xC.x2?x3D.(x3)25.如圖,共有12個大不相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個涂上陰影,則能構(gòu)成這個正方體的表面展開圖的概率是()A. B. C. D.6.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.7.7的相反數(shù)是()A.7 B.-7 C. D.-8.計算﹣2+3的結(jié)果是()A.1 B.﹣1 C.﹣5 D.﹣69.計算的結(jié)果是()A.a(chǎn)2 B.-a2 C.a(chǎn)4 D.-a410.在“朗讀者”節(jié)目的影響下,某中學(xué)開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學(xué)生讀書情況,隨機調(diào)查了八年級50名學(xué)生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:冊數(shù)01234人數(shù)41216171關(guān)于這組數(shù)據(jù),下列說法正確的是()A.中位數(shù)是2 B.眾數(shù)是17 C.平均數(shù)是2 D.方差是2二、填空題(本大題共6個小題,每小題3分,共18分)11.在一張直角三角形紙片的兩直角邊上各取一點,分別沿斜邊中點與這兩點的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.12.函數(shù)中,自變量的取值范圍是_____.13.一個n邊形的每個內(nèi)角都為144°,則邊數(shù)n為______.14.九(5)班有男生27人,女生23人,班主任發(fā)放準考證時,任意抽取一張準考證,恰好是女生的準考證的概率是________________.15.如圖,這是一幅長為3m,寬為1m的長方形世界杯宣傳畫,為測量宣傳畫上世界杯圖案的面積,現(xiàn)將宣傳畫平鋪在地上,向長方形宣傳畫內(nèi)隨機投擲骰子(假設(shè)骰子落在長方形內(nèi)的每一點都是等可能的),經(jīng)過大量重復(fù)投擲試驗,發(fā)現(xiàn)骰子落在世界杯圖案中的頻率穩(wěn)定在常數(shù)0.4附近,由此可估計宣傳畫上世界杯圖案的面積約為___________________m1.16.在不透明的口袋中有若干個完全一樣的紅色小球,現(xiàn)放入10個僅顏色不同的白色小球,均勻混合后,有放回的隨機摸取30次,有10次摸到白色小球,據(jù)此估計該口袋中原有紅色小球個數(shù)為_____.三、解答題(共8題,共72分)17.(8分)已如:⊙O與⊙O上的一點A(1)求作:⊙O的內(nèi)接正六邊形ABCDEF;(要求:尺規(guī)作圖,不寫作法但保留作圖痕跡)(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.18.(8分)如圖,在中,,的垂直平分線交于,交于,射線上,并且.()求證:;()當(dāng)?shù)拇笮M足什么條件時,四邊形是菱形?請回答并證明你的結(jié)論.19.(8分)如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當(dāng)∠DAE=時,四邊形ADFP是菱形;②當(dāng)∠DAE=時,四邊形BFDP是正方形.20.(8分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.21.(8分)如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求證:四邊形ABCD是矩形;若DE=3,OE=9,求AB、AD的長.22.(10分)根據(jù)圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應(yīng)放入大球、小球各多少個?23.(12分)為了抓住梵凈山文化藝術(shù)節(jié)的商機,某商店決定購進A、B兩種藝術(shù)節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.(1)求購進A、B兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?24.(8分)如圖,在平面直角坐標系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.2、B【解析】
根據(jù)中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【詳解】請在此輸入詳解!3、D【解析】
試題解析:根據(jù)題意得=30%,解得n=30,所以這個不透明的盒子里大約有30個除顏色外其他完全相同的小球.故選D.考點:利用頻率估計概率.4、C【解析】解:A.x10÷x2=x8,不符合題意;B.x6﹣x不能進一步計算,不符合題意;C.x2x3=x5,符合題意;D.(x3)2=x6,不符合題意.故選C.5、D【解析】
由正方體表面展開圖的形狀可知,此正方體還缺一個上蓋,故應(yīng)在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因為共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,所以剩下7個小正方形.在其余的7個小正方形中任取一個涂上陰影,能構(gòu)成這個正方體的表面展開圖的小正方形有4個,因此先從其余的小正方形中任取一個涂上陰影,能構(gòu)成這個正方體的表面展開圖的概率是.故選D.【點睛】本題考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關(guān)鍵.6、D【解析】
先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【點睛】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.7、B【解析】
根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】7的相反數(shù)是?7,故選:B.【點睛】此題考查相反數(shù),解題關(guān)鍵在于掌握其定義.8、A【解析】
根據(jù)異號兩數(shù)相加的法則進行計算即可.【詳解】解:因為-2,3異號,且|-2|<|3|,所以-2+3=1.故選A.【點睛】本題主要考查了異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值.9、D【解析】
直接利用同底數(shù)冪的乘法運算法則計算得出答案.【詳解】解:,故選D.【點睛】此題主要考查了同底數(shù)冪的乘法運算,正確掌握運算法則是解題關(guān)鍵.10、A【解析】試題解析:察表格,可知這組樣本數(shù)據(jù)的平均數(shù)為:(0×4+1×12+2×16+3×17+4×1)÷50=;∵這組樣本數(shù)據(jù)中,3出現(xiàn)了17次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是3;∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是2,∴這組數(shù)據(jù)的中位數(shù)為2,故選A.考點:1.方差;2.加權(quán)平均數(shù);3.中位數(shù);4.眾數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、45或1【解析】
先根據(jù)題意畫出圖形,再根據(jù)勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【詳解】①如圖:因為AC=22+4點A是斜邊EF的中點,所以EF=2AC=45,②如圖:因為BD=32點D是斜邊EF的中點,所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【點睛】此題考查了圖形的剪拼,解題的關(guān)鍵是能夠根據(jù)題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.12、【解析】
根據(jù)被開方式是非負數(shù)列式求解即可.【詳解】依題意,得,解得:,故答案為:.【點睛】本題考查了函數(shù)自變量的取值范圍,函數(shù)有意義時字母的取值范圍一般從幾個方面考慮:①當(dāng)函數(shù)解析式是整式時,字母可取全體實數(shù);②當(dāng)函數(shù)解析式是分式時,考慮分式的分母不能為0;③當(dāng)函數(shù)解析式是二次根式時,被開方數(shù)為非負數(shù).④對于實際問題中的函數(shù)關(guān)系式,自變量的取值除必須使表達式有意義外,還要保證實際問題有意義.13、10【解析】
解:因為正多邊形的每個內(nèi)角都相等,每個外角都相等,根據(jù)相鄰兩個內(nèi)角和外角關(guān)系互補,可以求出這個多邊形的每個外角等于36°,因為多邊形的外角和是360°,所以這個多邊形的邊數(shù)等于360°÷36°=10,故答案為:1014、23【解析】
用女生人數(shù)除以總?cè)藬?shù)即可.【詳解】由題意得,恰好是女生的準考證的概率是2350故答案為:2350【點睛】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=mn15、1.4【解析】
由概率估計圖案在整副畫中所占比例,再求出圖案的面積.【詳解】估計宣傳畫上世界杯圖案的面積約為3×1×0.4=1.4m1.故答案為1.4【點睛】本題考核知識點:幾何概率.解題關(guān)鍵點:由幾何概率估計圖案在整副畫中所占比例.16、20【解析】
利用頻率估計概率,設(shè)原來紅球個數(shù)為x個,根據(jù)摸取30次,有10次摸到白色小球結(jié)合概率公式可得關(guān)于x的方程,解方程即可得.【詳解】設(shè)原來紅球個數(shù)為x個,則有=,解得,x=20,經(jīng)檢驗x=20是原方程的根.故答案為20.【點睛】本題考查了利用頻率估計概率和概率公式的應(yīng)用,熟練掌握概率的求解方法以及分式方程的求解方法是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)答案見解析;(2)證明見解析.【解析】
(1)如圖,在⊙O上依次截取六段弦,使它們都等于OA,從而得到正六邊形ABCDEF;(2)連接BE,如圖,利用正六邊形的性質(zhì)得AB=BC=CD=DE=EF=FA,,則判斷BE為直徑,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判斷四邊形BCEF為矩形.【詳解】解:(1)如圖,正六邊形ABCDEF為所作;(2)四邊形BCEF為矩形.理由如下:連接BE,如圖,∵六邊形ABCDEF為正六邊形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE為直徑,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四邊形BCEF為矩形.【點睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了矩形的判定與正六邊形的性質(zhì).18、(1)見解析;(2)見解析【解析】
(1)求出EF∥AC,根據(jù)EF=AC,利用平行四邊形的判定推出四邊形ACEF是平行四邊形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根據(jù)菱形的判定推出即可.【詳解】(1)證明:∵∠ACB=90°,DE是BC的垂直平分線,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四邊形ACEF是平行四邊形,∴AF=CE;(2)當(dāng)∠B=30°時,四邊形ACEF是菱形,證明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE是BC的垂直平分線,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=AB,∴CE=AC,∵四邊形ACEF是平行四邊形,∴四邊形ACEF是菱形,即當(dāng)∠B=30°時,四邊形ACEF是菱形.【點睛】本題考查了菱形的判定平行四邊形的判定線段垂直平分線,含30度角的直角三角形性質(zhì),直角三角形斜邊上中線性質(zhì)等知識點的應(yīng)用綜合性比較強,有一定的難度.19、(1)詳見解析;(2)①67.5°;②90°.【解析】
(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據(jù)題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據(jù)四邊形ADFP是菱形和菱形的性質(zhì),可以求得∠DAE的度數(shù);②根據(jù)四邊形BFDP是正方形,可以求得∠DAE的度數(shù).【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【點睛】本題考查菱形的判定與性質(zhì)、切線的性質(zhì)、正方形的判定,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用菱形的性質(zhì)和正方形的性質(zhì)解答.20、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】
(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,如圖所示:過B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.21、(1)證明見解析;(2)AB、AD的長分別為2和1.【解析】
(1)證Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.證四邊形ABCD是平行四邊形,又,故四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【詳解】(1)證明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO與Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL).∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四邊形ABCD是平行四邊形.∵,∴四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:,解得.∴AD=1.即AB、AD的長分別為2和1.【點睛】矩形的判定和性質(zhì);掌握判斷定證三角形全等是關(guān)鍵.22、詳見解析【解析】
(1)設(shè)一個小球使水面升高x厘米,一個大球使水面升高y厘米,根據(jù)圖象提供的數(shù)據(jù)建立方程求解即可.(1)設(shè)應(yīng)放入大球m個,小球n個,根據(jù)題意列二元一次方程組求解即可.【詳解】解:(1)設(shè)一個小球使水面升高x厘米,由圖意,得2x=21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 牛奶配送分包協(xié)議書范本
- 2025年十八項醫(yī)療核心制度考試試題及答案
- 助農(nóng)臍橙協(xié)議書范本
- 燃氣整改協(xié)議書范本大全
- 2025年麻醉意外及并發(fā)癥試題及答案
- 2025年職業(yè)病防治與化學(xué)知識測試題及答案
- 2025年小學(xué)數(shù)學(xué)課程標準測試題及答案
- 2025年汽車裝配考試題及答案
- 2025年肌內(nèi)注射試題及答案
- 2025年工傷保險知識競賽題庫(試題及答案)
- 2025年福建省中小學(xué)教師招聘考試試卷-教育綜合基礎(chǔ)知識試題及答案
- 會展物品租賃管理辦法
- 2025年安徽省初中學(xué)業(yè)水平考試中考物理真題試卷(中考真題+答案)
- 2025年放射醫(yī)學(xué)技術(shù)師中級技術(shù)職稱考試試題(附答案)
- 婚內(nèi)債務(wù)隔離協(xié)議書范本
- 2025秋部編版(2024)八年級上冊語文上課課件 第三單元 閱讀綜合實踐
- TZZB3051-2023電氣絕緣用玻璃纖維增強不飽和聚酯塊狀阻燃模塑料UP-BMC
- 企業(yè)職務(wù)津貼管理制度
- 足外翻康復(fù)訓(xùn)練講課件
- “AI+知識圖譜”賦能高職院校金課建設(shè)的研究與實踐
- 高中英語必背3500單詞表完整版
評論
0/150
提交評論