




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆山東省安丘市職工子弟校中考數(shù)學模擬預測題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知函數(shù)y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥02.上周周末放學,小華的媽媽來學校門口接他回家,小華離開教室后不遠便發(fā)現(xiàn)把文具盒遺忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并與班主任交流了一下周末計劃才離開,為了不讓媽媽久等,小華快步跑到學校門口,則小華離學校門口的距離y與時間t之間的函數(shù)關系的大致圖象是()A. B. C. D.3.如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設△PAD的面積為y,P點的運動時間為x,則y關于x的函數(shù)圖象大致為()A.B.C.D.4.對于命題“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題的是()A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°C.∠1=30°,∠1=60° D.∠1=∠1=45°5.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經過第()象限.A.一 B.二 C.三 D.四6.如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米7.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC,若∠CAB=22.5°,CD=8cm,則⊙O的半徑為()A.8cm B.4cm C.4cm D.5cm8.“單詞的記憶效率”是指復習一定量的單詞,一周后能正確默寫出的單詞個數(shù)與復習的單詞個數(shù)的比值.右圖描述了某次單詞復習中四位同學的單詞記憶效率與復習的單詞個數(shù)的情況,則這四位同學在這次單詞復習中正確默寫出的單詞個數(shù)最多的是()A. B. C. D.9.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE10.把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在同一平面內,將邊長相等的正三角形和正六邊形的一條邊重合并疊在一起,則∠1的度數(shù)為_____.12.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構成的圖形的面積為__________.13.如果方程x2-4x+3=0的兩個根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.14.我國經典數(shù)學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.15.如圖,將△AOB繞點按逆時針方向旋轉后得到,若,則的度數(shù)是_______.16.如圖,在中國象棋的殘局上建立平面直角坐標系,如果“相”和“兵”的坐標分別是(3,-1)和(-3,1),那么“卒”的坐標為_____.
17.方程的解是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(A在B的左側),與y軸交于點C.(1)求點A,點B的坐標;(2)P為第二象限拋物線上的一個動點,求△ACP面積的最大值.19.(5分)小王上周五在股市以收盤價(收市時的價格)每股25元買進某公司股票1000股,在接下來的一周交易日內,小王記下該股票每日收盤價格相比前一天的漲跌情況:(單位:元)星期一二三四五每股漲跌(元)+2﹣1.4+0.9﹣1.8+0.5根據(jù)上表回答問題:(1)星期二收盤時,該股票每股多少元?(2)周內該股票收盤時的最高價,最低價分別是多少?(3)已知買入股票與賣出股票均需支付成交金額的千分之五的交易費.若小王在本周五以收盤價將全部股票賣出,他的收益情況如何?20.(8分)如圖,某校數(shù)學興趣小組要測量大樓AB的高度,他們在點C處測得樓頂B的仰角為32°,再往大樓AB方向前進至點D處測得樓頂B的仰角為48°,CD=96m,其中點A、D、C在同一直線上.求AD的長和大樓AB的高度(結果精確到2m)參考數(shù)據(jù):sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.7321.(10分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為2cm/s;同時點Q由點A出發(fā)沿AC方向點C勻速運動,速度為lcm/s;連接PQ,設運動的時間為t秒(0<t<5),解答下列問題:(1)當為t何值時,PQ∥BC;(2)設△AQP的面積為y(cm2),求y關于t的函數(shù)關系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.22.(10分)如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當PD∥AB時,求BP的長.23.(12分)如圖,在平面直角坐標系中,直線y=x+2與x軸,y軸分別交于A,B兩點,點C(2,m)為直線y=x+2上一點,直線y=﹣x+b過點C.求m和b的值;直線y=﹣x+b與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動.設點P的運動時間為t秒.①若點P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.24.(14分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:根據(jù)反比例函數(shù)的性質,再結合函數(shù)的圖象即可解答本題.解:根據(jù)反比例函數(shù)的性質和圖象顯示可知:此函數(shù)為減函數(shù),x≥-1時,在第三象限內y的取值范圍是y≤-1;在第一象限內y的取值范圍是y>1.故選C.考點:本題考查了反比例函數(shù)的性質點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數(shù)的基本性質和知識,反比例函數(shù)y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內y隨x的增大而減?。划攌<1時,圖象在二、四象限,在每個象限內,y隨x的增大而增大2、B【解析】分析:根據(jù)題意出教室,離門口近,返回教室離門口遠,在教室內距離不變,速快跑距離變化快,可得答案.詳解:根據(jù)題意得,函數(shù)圖象是距離先變短,再變長,在教室內沒變化,最后迅速變短,B符合題意;
故選B.點睛:本題考查了函數(shù)圖象,根據(jù)距離的變化描述函數(shù)是解題關鍵.3、B【解析】【分析】設菱形的高為h,即是一個定值,再分點P在AB上,在BC上和在CD上三種情況,利用三角形的面積公式列式求出相應的函數(shù)關系式,然后選擇答案即可.【詳解】分三種情況:①當P在AB邊上時,如圖1,設菱形的高為h,y=12∵AP隨x的增大而增大,h不變,∴y隨x的增大而增大,故選項C不正確;②當P在邊BC上時,如圖2,y=12AD和h都不變,∴在這個過程中,y不變,故選項A不正確;③當P在邊CD上時,如圖3,y=12∵PD隨x的增大而減小,h不變,∴y隨x的增大而減小,∵P點從點A出發(fā)沿A→B→C→D路徑勻速運動到點D,∴P在三條線段上運動的時間相同,故選項D不正確,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,菱形的性質,根據(jù)點P的位置的不同,運用分類討論思想,分三段求出△PAD的面積的表達式是解題的關鍵.4、D【解析】
能說明是假命題的反例就是能滿足已知條件,但不滿足結論的例子.【詳解】“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題為∠1=∠1=45°.故選:D.【點睛】考查了命題與定理的知識,理解能說明它是假命題的反例的含義是解決本題的關鍵.5、B【解析】
根據(jù)反比例函數(shù)的性質得k>0,然后根據(jù)一次函數(shù)的進行判斷直線y=kx-k不經過的象限.【詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經過第一、三、四象限,即不經過第二象限.故選:B.【點睛】考查了待定系數(shù)法求反比例函數(shù)的解析式:設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質.6、A【解析】
作BM⊥ED交ED的延長線于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構建方程即可解決問題.【詳解】作BM⊥ED交ED的延長線于M,CN⊥DM于N.在Rt△CDN中,∵,設CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四邊形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故選A.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.7、C【解析】
連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出OC的長,即為圓的半徑.【詳解】解:連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴故選:C.【點睛】此題考查了垂徑定理,等腰直角三角形的性質,以及圓周角定理,熟練掌握垂徑定理是解本題的關鍵.8、C【解析】分析:在四位同學中,M同學單詞記憶效率最高,但是復習的單詞最少,T同學復習的單詞最多,但是他的單詞記憶效率最低,N,S兩位同學的單詞記憶效率基本相同,但是S同學復習的單詞最多,這四位同學在這次單詞復習中正確默寫出的單詞個數(shù)最多的應該是S.詳解:在四位同學中,M同學單詞記憶效率最高,但是復習的單詞最少,T同學復習的單詞最多,但是他的單詞記憶效率最低,N,S兩位同學的單詞記憶效率基本相同,但是S同學復習的單詞最多,這四位同學在這次單詞復習中正確默寫出的單詞個數(shù)最多的應該是S.故選C.點睛:考查函數(shù)的圖象,正確理解題目的意思是解題的關鍵.9、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.10、A【解析】
根據(jù)“上加下減”的原則進行解答即可.【詳解】解:由“上加下減”的原則可知,把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是:y=﹣2x2+1.故選A.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減”的原則是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、60°【解析】
先根據(jù)多邊形的內角和公式求出正六邊形每個內角的度數(shù),然后用正六邊形內角的度數(shù)減去正三角形內角的度數(shù)即可.【詳解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案為:60°.【點睛】題考查了多邊形的內角和公式,熟記多邊形的內角和公式為(n-2)×180°是解答本題的關鍵.12、12.2【解析】
∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.13、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當3是直角邊時,∵△ABC最小的角為A,∴tanA=;②當3是斜邊時,根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.14、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.15、60°【解析】
根據(jù)題意可得,根據(jù)已知條件計算即可.【詳解】根據(jù)題意可得:,故答案為60°【點睛】本題主要考查旋轉角的有關計算,關鍵在于識別那個是旋轉角.16、(-2,-2)【解析】
先根據(jù)“相”和“兵”的坐標確定原點位置,然后建立坐標系,進而可得“卒”的坐標.【詳解】“卒”的坐標為(﹣2,﹣2),故答案是:(﹣2,﹣2).【點睛】考查了坐標確定位置,關鍵是正確確定原點位置.17、.【解析】
根據(jù)解分式方程的步驟依次計算可得.【詳解】解:去分母,得:,解得:,當時,,所以是原分式方程的解,故答案為:.【點睛】本題主要考查解分式方程,解題的關鍵是熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結論.三、解答題(共7小題,滿分69分)18、(1)A(﹣4,0),B(2,0);(2)△ACP最大面積是4.【解析】
(1)令y=0,得到關于x的一元二次方程﹣x2﹣x+4=0,解此方程即可求得結果;(2)先求出直線AC解析式,再作PD⊥AO交AC于D,設P(t,﹣t2﹣t+4),可表示出D點坐標,于是線段PD可用含t的代數(shù)式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP關于t的函數(shù)關系式,繼而可求出△ACP面積的最大值.【詳解】(1)解:設y=0,則0=﹣x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D設AC解析式y(tǒng)=kx+b∴解得:∴AC解析式為y=x+4.設P(t,﹣t2﹣t+4)則D(t,t+4)∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2∴S△ACP=PD×4=﹣(t+2)2+4∴當t=﹣2時,△ACP最大面積4.【點睛】本題考查二次函數(shù)綜合,解題的關鍵是掌握待定系數(shù)法進行求解.19、(1)25.6元;(2)收盤最高價為27元/股,收盤最低價為24.7元/股;(3)-51元,虧損51元.【解析】試題分析:(1)根據(jù)有理數(shù)的加減法的運算方法,求出星期二收盤時,該股票每股多少元即可.(2)這一周內該股票星期一的收盤價最高,星期四的收盤價最低.(3)用本周五以收盤價將全部股票賣出后得到的錢數(shù)減去買入股票與賣出股票均需支付的交易費,判斷出他的收益情況如何即可.試題解析:(1)星期二收盤價為25+2?1.4=25.6(元/股)答:該股票每股25.6元.(2)收盤最高價為25+2=27(元/股)收盤最低價為25+2?1.45+0.9?1.8=24.7(元/股)答:收盤最高價為27元/股,收盤最低價為24.7元/股.(3)(25.2-25)×1000-5‰×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益為-51元.20、AD的長約為225m,大樓AB的高約為226m【解析】
首先設大樓AB的高度為xm,在Rt△ABC中利用正切函數(shù)的定義可求得,然后根據(jù)∠ADB的正切表示出AD的長,又由CD=96m,可得方程,解此方程即可求得答案.【詳解】解:設大樓AB的高度為xm,
在Rt△ABC中,∵∠C=32°,∠BAC=92°,
∴,
在Rt△ABD中,,
∴,
∵CD=AC-AD,CD=96m,
∴,
解得:x≈226,∴
答:大樓AB的高度約為226m,AD的長約為225m.【點睛】本題考查解直角三角形的應用.要求學生能借助仰角構造直角三角形并解直角三角形,注意數(shù)形結合思想與方程思想的應用.21、(1)當t=時,PQ∥BC;(2)﹣(t﹣)2+,當t=時,y有最大值為;(3)存在,當t=時,四邊形PQP′C為菱形【解析】
(1)只要證明△APQ∽△ABC,可得=,構建方程即可解決問題;(2)過點P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質構建二次函數(shù)即可解決問題;
(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構建方程即可解決問題;【詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當t=時,PQ∥BC.(2)過點P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當t=時,y有最大值為.(3)存在.理由:連接PP′,交AC于點O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當t=時,四邊形PQP′C為菱形.【點睛】本題考查四邊形綜合題、相似三角形的判定和性質、平行線的性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會理由參數(shù)構建方程解決問題,屬于中考壓軸題.22、(1)證明見解析;(2).【解析】(2)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到,即AB?CD=CP?BP,由AB=AC即可得到AC?CD=CP?BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運用相似三角形的性質即可求出BP的長.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際能源投資與貿易面試題目
- 2026年高考英語復習新題速遞之應用文寫作(2025年7月)
- 高端裝備制造業(yè)行業(yè)概述
- 傳統(tǒng)醫(yī)學與關節(jié)囊炎腫瘤的結合研究
- 細胞觀察方法
- 上海市北虹、上理工附中、同二、光明、六十、盧高、東昌等七校聯(lián)考2026屆化學高二上期中考試試題含解析
- 學習2022慶圣誕迎元旦活動策劃方案專題解讀課件
- 高血壓病的防治
- 神經內科護士進修匯報5分鐘
- 位置與順序的講解
- 氧化鋁制取全套教學教程整套課件全書電子教案
- 2024年資金分析師職業(yè)鑒定考試復習題庫資料(濃縮500題)
- 項目部地震應急演練方案
- 安徽省渦陽縣2023-2024學年八年級下學期期末考試語文試題
- 班級管理教育調查報告(3篇模板)
- 2024年度醫(yī)療器械監(jiān)督管理條例培訓課件
- 外研版八年級下冊英語知識點、語法總結
- GB/T 18910.4-2024液晶顯示器件第4部分:液晶顯示模塊和屏基本額定值和特性
- 一規(guī)程四細則培訓課件2024
- 意大利米蘭整骨技術的案例分享-之評估篇
- 部編小學語文6年級上冊第8單元作業(yè)設計5
評論
0/150
提交評論