江西省上饒市名校2026屆中考數學考試模擬沖刺卷含解析_第1頁
江西省上饒市名校2026屆中考數學考試模擬沖刺卷含解析_第2頁
江西省上饒市名校2026屆中考數學考試模擬沖刺卷含解析_第3頁
江西省上饒市名校2026屆中考數學考試模擬沖刺卷含解析_第4頁
江西省上饒市名校2026屆中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省上饒市名校2026屆中考數學考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現有如下結論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結論有()A.4個 B.3個 C.2個 D.1個2.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.83.若不等式組2x-1>3x≤a的整數解共有三個,則aA.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤64.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,其中正確的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤5.-的立方根是()A.-8 B.-4 C.-2 D.不存在6.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米7.若代數式有意義,則實數x的取值范圍是()A.x>0 B.x≥0 C.x≠0 D.任意實數8.已知二次函數y=x2+bx﹣9圖象上A、B兩點關于原點對稱,若經過A點的反比例函數的解析式是y=,則該二次函數的對稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣9.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣510.若數a,b在數軸上的位置如圖示,則()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0二、填空題(共7小題,每小題3分,滿分21分)11.拋物線y=2x2+4向左平移2個單位長度,得到新拋物線的表達式為_____.12.有兩名學員小林和小明練習射擊,第一輪10槍打完后兩人打靶的環(huán)數如圖所示,通常新手的成績不太穩(wěn)定,那么根據圖中的信息,估計小林和小明兩人中新手是_______.13.2018年5月13日,中國首艘國產航空母艦首次執(zhí)行海上試航任務,其排水量超過6萬噸,將數60000用科學記數法表示應為_______________.14.分解因式:3x2-6x+3=__.15.如圖,邊長為4的正方形ABCD內接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結論的序號都填上)16.如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經過第2019次運動后,動點P的坐標是_______.17.若關于x的方程x2+x﹣a+=0有兩個不相等的實數根,則滿足條件的最小整數a的值是()A.﹣1 B.0 C.1 D.2三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.19.(5分)如圖,在平面直角坐標系xOy中,函數y=kx(x<0)的圖象經過點A(-1,6),直線y=mx-2與x軸交于點B(①當n=-1時,判斷線段PD與PC的數量關系,并說明理由;②若PD≥2PC,結合函數的圖象,直接寫出n的取值范圍.20.(8分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結果保留根號和π)21.(10分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當與滿足什么關系時,四邊形是正方形?請說明理由.22.(10分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?23.(12分)臺州市某水產養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數關系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數關系如圖所示:(1)求日銷售量y與時間t的函數關系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?24.(14分)如圖,有四張背面完全相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A,B,C,D表示).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

由∠BEG=45°知∠BEA>45°,結合∠AEF=90°得∠HEC<45°,據此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質,等腰三角形的性質,全等三角形的性質和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.2、D【解析】分析:根據二元一次方程組的解,直接代入構成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據題意,將代入,得:,①+②,得:m+3n=8,故選D.點睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數是解題關鍵,比較簡單,是常考題型.3、C【解析】

首先確定不等式組的解集,利用含a的式子表示,根據整數解的個數就可以確定有哪些整數解,根據解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解不等式組得:2<x≤a,∵不等式組的整數解共有3個,∴這3個是3,4,5,因而5≤a<1.故選C.【點睛】本題考查了一元一次不等式組的整數解,正確解出不等式組的解集,確定a的范圍,是解答本題的關鍵.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.4、C【解析】試題解析:∵拋物線的頂點坐標A(1,3),∴拋物線的對稱軸為直線x=-=1,∴2a+b=0,所以①正確;∵拋物線開口向下,∴a<0,∴b=-2a>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以②錯誤;∵拋物線的頂點坐標A(1,3),∴x=1時,二次函數有最大值,∴方程ax2+bx+c=3有兩個相等的實數根,所以③正確;∵拋物線與x軸的一個交點為(4,0)而拋物線的對稱軸為直線x=1,∴拋物線與x軸的另一個交點為(-2,0),所以④錯誤;∵拋物線y1=ax2+bx+c與直線y2=mx+n(m≠0)交于A(1,3),B點(4,0)∴當1<x<4時,y2<y1,所以⑤正確.故選C.考點:1.二次函數圖象與系數的關系;2.拋物線與x軸的交點.5、C【解析】分析:首先求出的值,然后根據立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術平方根與立方根,屬于基礎題型.理解算術平方根與立方根的含義是解決本題的關鍵.6、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應用-仰角俯角問題.7、C【解析】

根據分式和二次根式有意義的條件進行解答.【詳解】解:依題意得:x2≥1且x≠1.解得x≠1.故選C.【點睛】考查了分式有意義的條件和二次根式有意義的條件.解題時,注意分母不等于零且被開方數是非負數.8、D【解析】

設A點坐標為(a,),則可求得B點坐標,把兩點坐標代入拋物線的解析式可得到關于a和b的方程組,可求得b的值,則可求得二次函數的對稱軸.【詳解】解:∵A在反比例函數圖象上,∴可設A點坐標為(a,).∵A、B兩點關于原點對稱,∴B點坐標為(﹣a,﹣).又∵A、B兩點在二次函數圖象上,∴代入二次函數解析式可得:,解得:或,∴二次函數對稱軸為直線x=﹣.故選D.【點睛】本題主要考查二次函數的性質,待定系數法求二次函數解析式,根據條件先求得b的值是解題的關鍵,注意掌握關于原點對稱的兩點的坐標的關系.9、B【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.10、D【解析】

首先根據有理數a,b在數軸上的位置判斷出a、b兩數的符號,從而確定答案.【詳解】由數軸可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原選項錯誤;B.ab<0,故原選項錯誤;C.a-b<0,故原選項錯誤;D.,正確.故選D.【點睛】本題考查了數軸及有理數的乘法,數軸上的數:右邊的數總是大于左邊的數,從而確定a,b的大小關系.二、填空題(共7小題,每小題3分,滿分21分)11、y=2(x+2)2+1【解析】試題解析:∵二次函數解析式為y=2x2+1,∴頂點坐標(0,1)向左平移2個單位得到的點是(-2,1),可設新函數的解析式為y=2(x-h)2+k,代入頂點坐標得y=2(x+2)2+1,故答案為y=2(x+2)2+1.點睛:函數圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數解析式求得平移后的函數解析式.12、小林【解析】

觀察圖形可知,小林的成績波動比較大,故小林是新手.

故答案是:小林.13、【解析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】60000小數點向左移動4位得到6,所以60000用科學記數法表示為:6×1,故答案為:6×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14、3(x-1)2【解析】

先提取公因式3,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】.故答案是:3(x-1)2.【點睛】考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.15、①②④【解析】

①根據ASA可證△BOE≌△COF,根據全等三角形的性質得到BE=CF,根據等弦對等弧得到,可以判斷①;

②根據SAS可證△BOG≌△COH,根據全等三角形的性質得到∠GOH=90°,OG=OH,根據等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;

③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;

④根據△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設BG=x,則BH=4-x,根據勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE與△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正確;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正確.③如圖所示,

∵△HOM≌△GON,

∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

設BG=x,則BH=4-x,

則GH==,

∴其最小值為4+2,④正確.

故答案為:①②④【點睛】考查了圓的綜合題,關鍵是熟練掌握全等三角形的判定和性質,等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.16、(2019,2)【解析】

分析點P的運動規(guī)律,找到循環(huán)次數即可.【詳解】分析圖象可以發(fā)現,點P的運動每4次位置循環(huán)一次.每循環(huán)一次向右移動四個單位.∴2019=4×504+3當第504循環(huán)結束時,點P位置在(2016,0),在此基礎之上運動三次到(2019,2)故答案為(2019,2).【點睛】本題是規(guī)律探究題,解題關鍵是找到動點運動過程中,每運動多少次形成一個循環(huán).17、D【解析】

根據根的判別式得到關于a的方程,求解后可得到答案.【詳解】關于x的方程有兩個不相等的實數根,則解得:滿足條件的最小整數的值為2.故選D.【點睛】本題考查了一元二次方程根與系數的關系,理解并能運用根的判別式得出方程是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(1)1【解析】

(1)根據角平分線的作圖可得;

(1)由等腰三角形的三線合一,結合E為AB邊的中點證EF為△ABD的中位線可得.【詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠ACD的平分線,∴CF是底邊AD的中線,即F為AD的中點,∵E是AB的中點,∴EF為△ABD的中位線,∴EF=BD=1.【點睛】本題主要考查作圖-基本作圖和等腰三角形的性質、中位線定理,熟練掌握等腰三角形的性質、中位線定理是解題的關鍵.19、(1)m=-2.(2)①判斷:PD=2PC.理由見解析;②-1≤n<0或n≤-3.【解析】

(1)利用代點法可以求出參數k,m;(2)①當n=-1時,即點P的坐標為(-1,2),即可求出點②根據①中的情況,可知n=-1或n=-3再結合圖像可以確定n的取值范圍;【詳解】解:(1)∵函數y=kx(x<0)的圖象G∴將點A(-1,6)代入y=∵直線y=mx-2與x軸交于點B(∴將點B(-1,0)代入y=mx-2(2)①判斷:PD=2PC.理由如下:當n=-1時,點P的坐標為(-1∴點C的坐標為(-2,∴PC=1,PD=2.∴PD=2PC.②由①可知當n=-1時PD=2PC所以由圖像可知,當直線y=-2n往下平移的時也符合題意,即0<-2n≤1,得-1≤n<0;當n=-3時,點P的坐標為(∴點C的坐標為(-4,∴PC=1,PD=2∴PD=2PC當-2n≥6時,即n≤-3,也符合題意,所以n的取值范圍為:-1≤n<0或n≤-3.【點睛】本題主要考查了反比例函數和一次函數,熟練求反比例函數和一次函數解析式的方法、坐標與線段長度的轉化和數形結合思想是解題關鍵.20、(1)證明見解析;(2)93﹣3π【解析】試題分析:(1)、連接OD,根據平行四邊形的性質得出∠AOC=∠OBE,∠COD=∠ODB,結合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等,從而的得出答案;(2)、首先根據題意得出△OBD為等邊三角形,根據等邊三角形的性質得出EC=ED=BO=DB,根據Rt△AOC的勾股定理得出AC的長度,然后根據陰影部分的面積等于兩個△AOC的面積減去扇形OAD的面積得出答案.試題解析:(1)如圖連接OD.∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切線.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA?tan60°=3,∴S陰=2?S△AOC﹣S扇形OAD=2××3×3﹣120Π×32360=9﹣3π.21、見解析【解析】

(1)由菱形的性質得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;

(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【點睛】本題考查了全等三角形、菱形、正方形的性質,解題的關鍵是熟練的掌握菱形、正方形、全等三角形的性質.22、(1)一個足球需要50元,一個籃球需要80元;(2)1個.【解析】

(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,根據購買2個足球和3個籃球共需340元,4個排球和5個籃球共需600元,可得出方程組,解出即可;【詳解】(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,由題意得:2x+3y=解得:x=50y=80答:購買一個足球需要50元,購買一個籃球需要80元;(2)設該中學購買籃球m個,由題意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整數,∴m最大可取1.答:這所中學最多可以購買籃球1個.【點睛】本題考查了一元一次不等式及二元一次方程組的知識,解答本題的關鍵是仔細審題,得到等量關系及

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論