




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
烏龍木齊第四中學7年級數(shù)學下冊第五章生活中的軸對稱綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列圖案中,有且只有三條對稱軸的是()A. B. C. D.2、在“回收”、“節(jié)水”、“綠色食品”、“低碳”四個標志圖案中.軸對稱圖形是()A. B. C. D.3、以下是四個我國杰出企業(yè)代表的標志,其中是軸對稱圖形的是()A. B. C. D.4、下列圖形中,不是軸對稱圖形的是()A. B. C. D.5、下列交通標志圖案是軸對稱圖形的是()A. B.C. D.6、下列圖標中是軸對稱圖形的是()A. B. C. D.7、如圖,點D是∠FAB內的定點且AD=2,若點C、E分別是射線AF、AB上異于點A的動點,且△CDE周長的最小值是2時,∠FAB的度數(shù)是()A.30° B.45° C.60° D.90°8、下列學習用具中,不是軸對稱圖形的是()A. B.C. D.9、如圖,四邊形ABCD是軸對稱圖形,直線AC是它的對稱軸,若∠BAC=85°,∠B=25°,則∠BCD的大小為()A.150° B.140° C.130° D.120°10、放風箏是我國人民非常喜愛的一項戶外娛樂活動,下列風箏剪紙作品中,不是軸對稱圖形的是()A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在3×3的正方形網(wǎng)格中有兩個小正方形被涂黑,再將圖中其余小正方形任意一個涂黑,使得整個圖形(包括網(wǎng)格)構成一個軸對稱圖形,那么涂法共有________種.2、如圖,直角三角形紙片的兩直角邊分別為6和8,現(xiàn)將△ABC折疊,使點A與點B重合,折痕為DE,則△CBE的周長是___.3、漢字中、日、田等都可看作是軸對稱圖形,請你再寫出一個這樣的漢字:______.4、如圖的三角形紙片中,AB=8,BC=6,AC=5,沿過點B的直線折疊這個三角形,使得點C落在AB邊上的點E處,折痕為BD,則△AED的周長=____.5、在一條可以折疊的數(shù)軸上,A,B表示的數(shù)分別是-16,9,如圖,以點C為折點,將此數(shù)軸向右對折,若點A在點B的右邊,且AB=1,則C點表示的數(shù)是_______.6、如圖,直線AD為ABC的對稱軸,BC=6,AD=4,則圖中陰影部分的面積為__________.7、如圖,△ABC中,點D在邊BC上,將點D分別以AB、AC為對稱軸,畫出對稱點E、F,連接AE、AF.根據(jù)圖中標示的角度,可知∠EAF=___°.8、如圖,將長方形沿折疊,點落在邊上的點處,點落在點處,若,則等于_______(用含的式子表示).9、如圖,△ABD和△ACD關于直線AD對稱,若S△ABC=12,則圖中陰影部分面積為___.10、如圖,四邊形ABCD中,AD∥BC,直線l是它的對稱軸,∠B=53°,則∠D的大小為______°.三、解答題(6小題,每小題10分,共計60分)1、如圖,△ABC中,D為BC上一點,∠C=∠BAD,△ABC的角平分線BE交AD于點F.(1)求證:∠AEF=∠AFE;(2)G為BC上一點,當FE平分∠AFG且∠C=30°時,求∠CGF的度數(shù).2、在邊長為1個單位長度的小正方形網(wǎng)格中,建立平面直角坐標系,已知點O為坐標原點,點C的坐標為(3,1)(1)寫出點A和點B的坐標,并在圖中畫出與△ABC關于x軸對稱的圖形△;(2)寫出點B1的坐標,連接CB1,則線段CB1的長為.(直接寫出得數(shù))3、如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點三角形ABC(三角形的頂點都在網(wǎng)格格點上).(1)在圖中畫出△ABC關于直線l對稱的△A′B′C′(要求:點A與點A′、點B與點B′、點C與點C′相對應);(2)在(1)的結果下,設AB交直線l于點D,連接AB′,求四邊形AB′CD的面積.4、如圖,在平面直角坐標系中,各頂點的坐標分別為:,,.(1)在圖中作,使與關于y軸對稱;(2)在(1)的條件下,寫出點A、B、C的對應點、、的坐標.5、如圖,在正方形網(wǎng)格中,點A、B、C、M、N都在格點上.(1)作△ABC關于直線MN對稱的圖形△A'B'C';(2)作出AB邊上的中線;(3)若每個小正方形邊長均為1,則△ABC的面積=______.6、如圖,已知△ABC和直線l,作出△ABC關于直線l的對稱圖形△A'B'C′.(不寫作法,保留作圖痕跡)-參考答案-一、單選題1、D【詳解】解:A、不是軸對稱圖形,故不符合題意;B、有四條對稱軸,故不符合題意;C、不是軸對稱圖形,故不符合題意;D、有三條對稱軸,故符合題意.故選:D.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.2、C【詳解】解:A、不是軸對稱圖形,故此選項不合題意;B、不是軸對稱圖形,故此選項不合題意;C、是軸對稱圖形,故此選項符合題意;D、不是軸對稱圖形,故此選項不合題意.故選:C【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.3、B【詳解】解:A、不是軸對稱圖形,故本選項不符合題意;B、是軸對稱圖形,故本選項符合題意;C、不是軸對稱圖形,故本選項不符合題意;D、不是軸對稱圖形,故本選項不符合題意;故選:B【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.4、A【詳解】A、不是軸對稱圖形,故符合題意;B、是軸對稱圖形,故不符合題意;C、是軸對稱圖形,故不符合題意;D、是軸對稱圖形,故不符合題意;故選A.【點睛】本題主要考查軸對稱圖形的識別,熟練掌握“如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫軸對稱圖形”是解題的關鍵.5、B【詳解】解:、不是軸對稱圖形,故本選項錯誤,不符合題意;、是軸對稱圖形,故本選項正確,符合題意;、不是軸對稱圖形,故本選項錯誤,不符合題意;、不是軸對稱圖形,故本選項錯誤,不符合題意.故選:B.【點睛】本題考查了軸對稱圖形,解題的關鍵是掌握軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.6、B【詳解】解:選項A中的圖形不是軸對稱圖形,故A不符合題意;選項B中的圖形是軸對稱圖形,故B符合題意;選項C中的圖形不是軸對稱圖形,故C不符合題意;選項D中的圖形不是軸對稱圖形,故D不符合題意;故選B【點睛】本題考查的是軸對稱圖形的識別,軸對稱圖形的概念:把一個圖形沿某條直線對折,對折后直線兩旁的部分能夠完全重合;掌握“軸對稱圖形的概念”是解本題的關鍵.7、A【分析】作D點分別關于AF、AB的對稱點G、H,連接GH分別交AF、AB于C′、E′,利用軸對稱的性質得AG=AD=AH=2,利用兩點之間線段最短判斷此時△CDE周長最小為DC′+DE′+C′E′=GH=2,可得△AGH是等邊三角形,進而可得∠FAB的度數(shù).【詳解】解:如圖,作D點分別關于AF、AB的對稱點G、H,連接GH分別交AF、AB于C′、E′,連接DC′,DE′,此時△CDE周長最小為DC′+DE′+C′E′=GH=2,根據(jù)軸對稱的性質,得AG=AD=AH=2,∠DAF=∠GAF,∠DAB=∠HAB,∴AG=AH=GH=2,∴△AGH是等邊三角形,∴∠GAH=60°,∴∠FAB=∠GAH=30°,故選:A.【點睛】本題考查了軸對稱-最短路線問題:熟練掌握軸對稱的性質,會利用兩點之間線段最短解決路徑最短問題.8、B【分析】把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,根據(jù)定義逐一分析即可.【詳解】解:選項A中的圖形是軸對稱圖形,故A不符合題意;選項B中的圖形不是軸對稱圖形,故B符合題意;選項C中的圖形是軸對稱圖形,故C不符合題意;選項D中的圖形是軸對稱圖形,故D不符合題意;故選B【點睛】本題考查的是軸對稱圖形的識別,掌握軸對稱圖形的定義是解題的關鍵.9、B【分析】根據(jù)三角形內角和的性質可求得,再根據(jù)對稱的性質可得,即可求解.【詳解】解:根據(jù)三角形內角和的性質可求得由軸對稱圖形的性質可得,∴故選:B【點睛】此題考查了三角形內角和的性質,軸對稱圖形的性質,解題的關鍵是掌握并利用相關基本性質進行求解.10、B【分析】根據(jù)軸對稱圖形的概念求解.在平面內,如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.【詳解】解:A、是軸對稱圖形,故此選項不合題意;B、不是軸對稱圖形,故此選項符合題意;C、是軸對稱圖形,故此選項不合題意;D、是軸對稱圖形,故此選項不合題意.故選:B.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.二、填空題1、5【分析】直接利用軸對稱圖形的性質分析得出答案.【詳解】解:如圖所示:所標數(shù)字之處都可以構成軸對稱圖形.故答案為:5.【點睛】此題主要考查了利用軸對稱設計圖案,正確掌握軸對稱圖形的性質是解題關鍵.2、14【分析】根據(jù)圖形翻折變換的性質得出AE=BE,進而可得出△CBE的周長=AC+BC.【詳解】解:∵△BDE是△ADE翻折而成,∴AE=BE,∴△CBE的周長=BC+BE+CE=BC+AE+CE=BC+AC,∵角三角形紙片的兩直角邊長分別為6和8,∴△CBE的周長是14.故答案為:14.【點睛】本題考查的是圖形翻折變換的性質,熟知“折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等”的知識是解答此題的關鍵.3、一(答案不唯一)【分析】如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此解答即可.【詳解】解:由軸對稱圖形的定義可得:一、二、三、甲、出、本、王、平都是軸對稱圖形.故答案為:一(答案不唯一).【點睛】此題主要考查了軸對稱圖形,掌握軸對稱圖形的意義,判斷是不是軸對稱圖形的關鍵是找出對稱軸,看圖形沿對稱軸對折后兩部分能否完全重合.4、7【分析】根據(jù)折疊的性質,可得BE=BC=6,CD=DE,從而AE=AB-BE=2,再由△AED的周長=AD+DE+AE,即可求解.【詳解】解:∵沿過點B的直線折疊這個三角形,使得點C落在AB邊上的點E處,∴BE=BC=6,CD=DE,∵AB=8,∴AE=AB-BE=2,∴△AED的周長=AD+DE+AE=AD+CD+AE=AC+DE=5+2=7.故答案為:7【點睛】本題主要考查了折疊的性質,熟練掌握折疊前后對應線段相等,對應角相等是解題的關鍵.5、-3【分析】根據(jù)A與B表示的數(shù)求出AB的長,再由折疊后AB的長,求出BC的長,即可確定出C表示的數(shù).【詳解】解:∵A,B表示的數(shù)為?16,9,∴AB=9?(?16)=25,∵折疊后AB=1,∴BC==12,∵點C在B的左側,∴C點表示的數(shù)為9-12=?3.故答案為:-3.【點睛】此題考查了數(shù)軸,折疊的性質,熟練掌握各自的性質是解本題的關鍵.6、6【分析】根據(jù)軸對稱的性質判斷出陰影部分的面積的和等于三角形的面積的一半,AD⊥BC,然后根據(jù)三角形的面積列式計算即可得解.【詳解】解:∵AD所在的直線是△ABC的對稱軸,∴陰影部分的面積的和等于三角形的面積的一半,AD⊥BC,∴陰影部分的面積和=×(×6×4)=6.故答案為:6.【點睛】本題考查軸對稱的性質,對應點的連線與對稱軸的位置關系是互相垂直,對應點所連的線段被對稱軸垂直平分,對稱軸上的任何一點到兩個對應點之間的距離相等,對應的角、線段都相等.7、106【分析】連接AD,根據(jù)軸對稱的性質求出,,再根據(jù)三角形的內角和定理求出,最后應用等價代換思想即可求解.【詳解】解:如下圖所示,連接AD.∵點E和點F是點D分別以AB、AC為對稱軸畫出的對稱點,∴,.∵,,∴.∴.故答案為:106.【點睛】本題考查軸對稱的性質,熟練掌握該知識點是解題關鍵.8、【分析】根據(jù)折疊得出∠DEF=∠HEF,∠EFG=∠EFC,求出∠DEF的度數(shù),根據(jù)平行線的性質得出∠DEF+∠EFC=180°,∠BFE=∠DEF,代入即可求出∠EFG,進而求出∠BFG.【詳解】解:∵將長方形ABCD沿EF折疊,點D落在AB邊上的H點處,點C落在點G處,∴∠DEF=∠HEF,∠EFG=∠EFC,∵∠AEH=m°,∴∠DEF=∠HEF=(180°-∠AEH)=(180°-m°),∵四邊形ABCD是長方形,∴AD∥BC,EH∥FG,∴∠DEF+∠EFC=180°,∠BFE=∠DEF=(180°-m°),∴∠EFG=∠EFC=180°-(180°-m°)=90°+m°,∴∠BFG=∠EFG-∠BFE=90°+m°-(180°-m°)=m°,故答案為:m.【點睛】本題考查了平行線的性質,折疊的性質等知識點,根據(jù)平行線的性質求出∠BFE=∠DEF和∠DEF+∠EFC=180°是解此題的關鍵.9、6【分析】根據(jù)軸對稱的性質可得,,由此即可得出答案.【詳解】解:和關于直線對稱,,,,則圖中陰影部分面積為,故答案為:6.【點睛】本題考查了軸對稱的性質,熟練掌握軸對稱的性質是解題關鍵.10、127【分析】根據(jù)軸對稱性質得出∠C=∠B=53°,根據(jù)平行線性質得出∠C+∠D=180°即可.【詳解】解:直線l是四邊形ABCD的對稱軸,∠B=53°,∴∠C=∠B=53°,∵AD∥BC,∴∠C+∠D=180°,∴∠D=180°-53°=127°.故答案為:127.【點睛】本題考查軸對稱性質,平行線性質,求一個角的的補角,掌握軸對稱性質,平行線性質,求一個角的的補角.三、解答題1、(1)見詳解;(2)150°【分析】(1)由角平分線定義得∠ABE=∠CBE,再根據(jù)三角形的外角性質得∠AEF=∠AFE;(2)由角平分線定義得∠AFE=∠GFE,進而得∠AEF=∠GFE,由平行線的判定得FG∥AC,再根據(jù)平行線的性質求得結果.【詳解】解:(1)證明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°?∠C=150°.【點睛】本題主要考查了平行線的性質與判定,三角形的外角性質,角平分線的定義,關鍵是綜合應用這些性質解決問題.2、(1)A(1,3),B(-3,2),見解析;(2)(-3,-2),【分析】(1)根據(jù)平面直角坐標系直接寫出點A,點B坐標,利用關于x軸對稱的點的坐標特征寫出點A1、B1、C1的坐標,然后描點即可得到△A1B1C1;(2)寫出B1的坐標,運用勾股定理可求出CB1的長.【詳解】解:(1)A(1,3),B(-3,2),如圖所示;(2)(-3,-2),的長為.故答案為:【點睛】本題主要考查作圖—軸對稱變換,解題的關鍵是掌握軸對稱變換的定義和性質,并據(jù)此得出變換后的對應點.3、(1)見解析;(2)14【分析】(1)根據(jù)軸對稱圖形的性質畫圖即可;(2)根據(jù)網(wǎng)格結構和割補法進行計算即可求得面積.【詳解】解:(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程成本控制與預算管理
- 圖形圖像處理廣告設計之廣告設計基礎07課件
- 建筑工程項目建筑拆除與清理方案
- 水痘麻疹預防課件
- 在C4D中創(chuàng)建簡單幾何小人圍觀小人輕松造45課件
- 助產技術上海濟光護理助產專業(yè)教學庫41課件
- 2025版復合材料護欄施工安全協(xié)議
- 2025版凱悅酒店消防安全隱患整改監(jiān)督合同
- 2025版新能源汽車經(jīng)銷商合作協(xié)議范本
- 二零二五版智慧家居系統(tǒng)工程合同
- 肌張力障礙演示課件
- 鍋爐安全技術規(guī)程標準(TSG 11-2020)
- 員工薪資調整審批表
- 中醫(yī)婦科學:女性的生殖臟器
- 除銹劑MSDS參考資料
- 不等式及其基本性質說課課件
- 明渠均勻流計算公式
- 《純物質熱化學數(shù)據(jù)手冊》
- 中國兒童嚴重過敏反應診斷與治療建議(2022年)解讀
- 電動力學-同濟大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 2023年山東威海乳山市事業(yè)單位招聘帶編入伍高校畢業(yè)生12人筆試備考題庫及答案解析
評論
0/150
提交評論