




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省閬中市中考數(shù)學真題分類(勾股定理)匯編同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F,若AC=3,AB=5,則CE的長為()A. B. C. D.2、《九章算術(shù)》是我國古代數(shù)學名著,記載著這樣一個問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”大意是:有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?設(shè)蘆葦?shù)拈L度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)23、如圖所示,將一根長為24cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在外面的長為hcm,則h的取值范圍是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤124、如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)的點F處,連接CF,則CF的長為()A. B. C. D.5、如圖,在2×2的正方形網(wǎng)格中有9個格點,已經(jīng)取定點A和B,在余下的點中任取一點C,使△ABC為直角三角形的概率是(
)A. B. C. D.6、已知點是平分線上的一點,且,作于點,點是射線上的一個動點,若,則的最小值為(
)A.2 B.3 C.4 D.57、如圖,正方體盒子的棱長為2,M為BC的中點,則一只螞蟻從A點沿盒子的表面爬行到M點的最短距離為(
)A. B.C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖1,鄰邊長為2和6的矩形分割成①,②,③,④四塊后,拼接成如圖2不重疊、無縫隙的正方形,則圖2中的值為___________,圖1中的長為_______.2、如圖,在的正方形網(wǎng)格中,每個小正方形的頂點稱為格點,點、、均在格點上,則______.3、如圖,已知四邊形中,,則四邊形的面積等于________.4、圖①所示的正方體木塊棱長為6cm,沿其相鄰三個面的對角線(圖中虛線)剪掉一角,得到如圖②的幾何體,一只螞蟻沿著圖②的幾何體表面從頂點A爬行到頂點B的最短距離為_____cm.5、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______6、公元三世紀,我國漢代數(shù)學家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”,它由四個全等的直角三角形與中間的小正方形拼成的一個大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.7、我國古代的數(shù)學名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時,繩索用盡問繩索長是多少?”示意圖如下圖所示,設(shè)繩索的長為尺,根據(jù)題意,可列方程為__________.8、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風吹來,蘆葦?shù)捻敹薉恰好到達水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米三、解答題(7小題,每小題10分,共計70分)1、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時施工,過點B作一直線m(在山的旁邊經(jīng)過),過點C作一直線l與m相交于D點,經(jīng)測量,,米,米.若施工隊每天挖100米,求施工隊幾天能挖完?2、閱讀與思考:請閱讀下列材料,并完成相應的任務.若直角三角形的三邊的長都是正整數(shù),則三邊的長為“勾股數(shù)”.構(gòu)造勾股數(shù),就是要尋找3個正整數(shù),使它們滿足“其中兩個數(shù)的平方和(或平方差)等于第三個數(shù)的平方”.通過觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當一組勾股數(shù)中(),最小數(shù)為奇數(shù)時,另兩個正整數(shù)和滿足比且,解得,.任務:(1)請證明猜想成立,即證明,,構(gòu)成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個數(shù)分別是________和________.3、超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學在濱海大道紅樹林路段,嘗試用自己所學的知識檢測車速,觀測點設(shè)在到公路l的距離為100米的P處.這時,一輛富康轎車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,∠BPO=45°,試判斷此車是否超過了每小時80千米的限制速度?4、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.5、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時,它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?6、如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點G,連接DG并延長交BC于H,連接BG.①依題意,補全圖形;②求證:;③若,用等式表示線段BG,HG與AE之間的數(shù)量關(guān)系,請直接寫出結(jié)論.7、如圖,中,,,是邊上一點,且,若.求的長.-參考答案-一、單選題1、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點F作FG⊥AB于點G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A.【考點】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識,關(guān)鍵是推出∠CEF=∠CFE.2、C【解析】【分析】首先設(shè)蘆葦長x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點】此題主要考查了勾股定理的應用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學模型.3、B【解析】【分析】根據(jù)題意畫出圖形,先找出h的值為最大和最小時筷子的位置,再根據(jù)勾股定理解答即可.【詳解】解:當筷子與杯底垂直時h最大,h最大=24﹣12=12cm.當筷子與杯底及杯高構(gòu)成直角三角形時h最小,如圖所示:此時,AB===13cm,∴h=24﹣13=11cm.∴h的取值范圍是11cm≤h≤12cm.故選:B.【考點】本題考查了勾股定理的實際應用問題,解答此題的關(guān)鍵是根據(jù)題意畫出圖形找出何時h有最大及最小值,同時注意勾股定理的靈活運用,有一定難度.4、C【解析】【分析】連接BF,(見詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點,可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì),對應點的連線被折痕垂直平分.5、C【解析】【分析】找到可以組成直角三角形的點,根據(jù)概率公式解答即可.【詳解】解:如圖,,,,均可與點和組成直角三角形.,故選:C.【考點】本題考查了概率公式,解題的關(guān)鍵是掌握如果一個事件有種可能,而且這些事件的可能性相同,其中事件出現(xiàn)種結(jié)果,那么事件的概率(A).6、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時,PN最短,再根據(jù)角平分線上的點到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當PN⊥OA時,PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點】本題考查了角平分線上的點到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.7、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時距離最短;∵正方體盒子棱長為2,M為BC的中點,∴,∴,故選:B.【考點】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開圖、勾股定理、兩點之間線段最短等知識,解題關(guān)鍵是牢記相關(guān)概念與靈活應用.二、填空題1、
【解析】【分析】由等積法解得正方形的邊長,再利用勾股定理解得圖④的直角邊FH的長,在圖2中,利用正弦的定義解得,接著利用勾股定理解得,據(jù)此解得的值,最后利用解答即可.【詳解】解:矩形的面積為:2×6=12正方形的邊長如圖1,如圖2,設(shè)或(舍去)故答案為:,.【考點】本題考查正方形與矩形、圖形的拼接,涉及勾股定理、正弦、余弦等知識,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.2、45°##45度【解析】【分析】取正方形網(wǎng)格中格點Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計算PQ=QB,進而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網(wǎng)格中格點Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關(guān)鍵.3、36【解析】【分析】連接AC,先根據(jù)勾股定理求出AC的長度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,最后利用三角形的面積公式求解即可.【詳解】連接AC,如下圖所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四邊形ABCD=AB?BC+AC?AD=×3×4+×5×12=36.【考點】本題考查了勾股定理及勾股定理的逆定理,正確作出輔助線是解題的關(guān)鍵.4、(3+3).【解析】【分析】要求螞蟻爬行的最短距離,需將圖②的幾何體表面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】如圖所示:△BCD是等腰直角三角形,△ACD是等邊三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴從頂點A爬行到頂點B的最短距離為(3+3)cm.故答案為(3+3).【考點】本題考查了平面展開-最短路徑問題,關(guān)鍵是把圖②的幾何體表面展開成平面圖形,根據(jù)等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì)解題.5、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長,進而可得出BD的長,根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.6、169.【解析】【分析】由題意知小正方形的邊長為7.設(shè)直角三角形中較小邊長為a,較長的邊為b,運用正切函數(shù)定義求解.【詳解】解:由題意知,小正方形的邊長為7,設(shè)直角三角形中較小邊長為a,較長的邊為b,則tanθ=短邊:長邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關(guān)鍵.7、x2?(x?3)2=82【解析】【分析】設(shè)繩索長為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點】本題考查了勾股定理的應用,找準等量關(guān)系,正確列出相應方程是解題的關(guān)鍵.8、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點】本題考查了勾股定理的應用,從現(xiàn)實圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.三、解答題1、施工隊6天能挖完.【解析】【分析】根據(jù)題意可得∠BCD=90°,再利用勾股定理得出BC,繼而即可求解.【詳解】解:∵,∴,∵米,米,∴(米)故(天)答:施工隊6天能挖完.【考點】本題考查外角的性質(zhì),勾股定理的應用,解題的關(guān)鍵是利用勾股定理求得∠BCD=90°.2、(1)見解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理證明即可.(2)利用勾股數(shù)的公式代入求值即可.(1)證明:,∴,,構(gòu)成勾股數(shù).(2)根據(jù)最小數(shù)為奇數(shù)時,另兩個正整數(shù)為,,當a=9時,,,故答案為:40,41.【考點】本題考查了勾股定理逆定理,勾股數(shù)的探索,代入求值,熟練掌握勾股數(shù)是解題的關(guān)鍵.3、此車超過每小時80千米的限制速度.【解析】【分析】首先,根據(jù)在直角三角形BPO中,∠BPO=45°,可得到BO=PO=100m,再根據(jù)在直角三角形APO中,∠APO=60°,運用三角函數(shù)值,可得到AO=100,根據(jù)AB=AO-BO可求得AB的長;再結(jié)合速度的計算方法,求出車的速度,然后將車的速度與80千米/時進行比較,即可得到結(jié)論.【詳解】解:在Rt△APO中,∠APO=60°,則∠PAO=30°.∴AP=2OP=200m,AO===100(m).在Rt△BOP中,∠BPO=45°,則BO=OP=100m.∴AB=AO-BO=100-100≈73(m).∴從A到B小車行駛的速度為73÷3≈24.3(m/s)=87.48km/h>80km/h.∴此車超過每小時80千米的限制速度.【考點】本題考查了解直角三角形的應用,從復雜的實際問題中整理出直角三角形并求解是解決此類題目的關(guān)鍵.4、△ABC為直角三角形或等腰三角形【解析】【分析】首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形.5、它至少5.2秒能趕回巢中.【解析】【分析】過點作于點.求出AF,EF,再根據(jù)勾股定理求出AE,從而求出時間.【詳解】解:如圖所示,米,米,米,米.過點作于點.在中,米,米,所以.所以喜鵲離巢的距離米.喜鵲趕回巢所需的時間為(秒).即它至少5.2秒能趕回巢中.【考點】考核知識點:勾股定理和逆定理運用.構(gòu)造直角三角形是解題關(guān)鍵.6、(1)見解析(2)①見解析;②見解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結(jié)論;(2)①依題意,補全圖形即可;②由直角三角形斜邊上的中線性質(zhì)得DG=EF,BG=EF,即可得出結(jié)論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后證△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 膝關(guān)節(jié)感染的護理
- 感染性腹瀉防控與診療要點
- 年產(chǎn)xx萬匹標磚項目可研報告
- 2025版旅游交通導游服務與安全保障合同
- 2025版人工智能語音助手研發(fā)合同范本
- 二零二五版電梯安裝工程安全風險評估及應對協(xié)議
- 2025版公司對分公司租賃的專家公寓及配套設(shè)施合同
- 二零二五年度國際勞務派遣人員派遣與勞動保護合同
- 二零二五版鋼材現(xiàn)貨居間代理合同
- 2025版股權(quán)托管與轉(zhuǎn)讓風險控制協(xié)議
- 直系親屬股權(quán)無償轉(zhuǎn)讓合同(2篇)
- 批判性思維能力測量表(CDTI-CV)-彭美慈
- 校外培訓機構(gòu)收費合同模板
- DB61T-半干旱區(qū)山地果園間作豆菜技術(shù)規(guī)范編制說明
- GB/T 25052-2024連續(xù)熱浸鍍層鋼板和鋼帶尺寸、外形、重量及允許偏差
- 2024至2030年中國短肽型腸內(nèi)營養(yǎng)制劑行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃報告
- CJT 457-2014 高桿照明設(shè)施技術(shù)條件
- 飼料學課件-第7章-飼料添加劑
- 員工賠償金保密協(xié)議書
- JBT 14685-2023 無油渦旋空氣壓縮機 (正式版)
- DZ∕T 0130.6-2006 地質(zhì)礦產(chǎn)實驗室測試質(zhì)量管理規(guī)范 第6部分:水樣分析(正式版)
評論
0/150
提交評論