2026屆遼寧省遼陽太子河區(qū)五校聯(lián)考中考數(shù)學最后一模試卷含解析_第1頁
2026屆遼寧省遼陽太子河區(qū)五校聯(lián)考中考數(shù)學最后一模試卷含解析_第2頁
2026屆遼寧省遼陽太子河區(qū)五校聯(lián)考中考數(shù)學最后一模試卷含解析_第3頁
2026屆遼寧省遼陽太子河區(qū)五校聯(lián)考中考數(shù)學最后一模試卷含解析_第4頁
2026屆遼寧省遼陽太子河區(qū)五校聯(lián)考中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆遼寧省遼陽太子河區(qū)五校聯(lián)考中考數(shù)學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時,已知水流速度為4千米/時,若設該輪船在靜水中的速度為x千米/時,則可列方程()A. B.C.+4=9 D.2.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.3.一元一次不等式組2x+1>A.4B.5C.6D.74.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.5.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.106.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數(shù)學知識是()A.兩點之間的所有連線中,線段最短B.經(jīng)過兩點有一條直線,并且只有一條直線C.直線外一點與直線上各點連接的所有線段中,垂線段最短D.經(jīng)過一點有且只有一條直線與已知直線垂直7.將拋物線y=x2先向左平移2個單位,再向下平移3個單位后所得拋物線的解析式為()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣38.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數(shù)為()A.40° B.50° C.60° D.70°9.據(jù)國土資源部數(shù)據(jù)顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當量,將39000000000用科學記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×10910.工信部發(fā)布《中國數(shù)字經(jīng)濟發(fā)展與就業(yè)白皮書(2018)》)顯示,2017年湖北數(shù)字經(jīng)濟總量1.21萬億元,列全國第七位、中部第一位.“1.21萬”用科學記數(shù)法表示為()A.1.21×103B.12.1×103C.1.21×104D.0.121×105二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是_____.12.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為_____.13.如圖,在ABCD中,AB=8,P、Q為對角線AC的三等分點,延長DP交AB于點M,延長MQ交CD于點N,則CN=__________.14.若a2﹣2a﹣4=0,則5+4a﹣2a2=_____.15.如圖所示,邊長為1的小正方形構成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于__________.16.如圖,菱形ABCD的面積為120cm2,正方形AECF的面積為50cm2,則菱形的邊長____cm.三、解答題(共8題,共72分)17.(8分)某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:LED燈泡普通白熾燈泡進價(元)4525標價(元)6030(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?18.(8分)某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價x(元)與產(chǎn)品的日銷售量y(件)之間的關系如表:x/元…152025…y/件…252015…已知日銷售量y是銷售價x的一次函數(shù).求日銷售量y(件)與每件產(chǎn)品的銷售價x(元)之間的函數(shù)表達式;當每件產(chǎn)品的銷售價定為35元時,此時每日的銷售利潤是多少元?19.(8分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.()請直接寫出袋子中白球的個數(shù).()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)20.(8分)先化簡,再求值:(1+)÷,其中x=+1.21.(8分)直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.求證:;若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.22.(10分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點B坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數(shù)和一次函數(shù)的解析式;求△AOB的面積;點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.23.(12分)為了提高服務質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?24.如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點E的坐標,并求出點E縱坐標的范圍;(3)求△BCE的面積最大值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)輪船在靜水中的速度為x千米/時可進一步得出順流與逆流速度,從而得出各自航行時間,然后根據(jù)兩次航行時間共用去9小時進一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時,∴順流航行時間為:,逆流航行時間為:,∴可得出方程:,故選:A.【點睛】本題主要考查了分式方程的應用,熟練掌握順流與逆流速度的性質(zhì)是解題關鍵.2、B【解析】

連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.3、C【解析】試題分析:∵解不等式2x+1>0得:x>-12,解不等式x-5≤0,得:x≤5,∴不等式組的解集是考點:一元一次不等式組的整數(shù)解.4、C【解析】

先分別表示出小進和小俊跑800米的時間,再根據(jù)小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【點睛】本題考查了列分式方程解應用題,能找出題目中的相等關系式是解此題的關鍵.5、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.6、B【解析】

本題要根據(jù)過平面上的兩點有且只有一條直線的性質(zhì)解答.【詳解】根據(jù)兩點確定一條直線.故選:B.【點睛】本題考查了“兩點確定一條直線”的公理,難度適中.7、D【解析】

先得到拋物線y=x2的頂點坐標(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)平移后的對應點的坐標為(-2,-1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線y=x2的頂點坐標為(0,0),把點(0,0)先向左平移2個單位,再向下平移1個單位得到對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.故選:D.【點睛】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.8、B【解析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.9、A【解析】

用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】39000000000=3.9×1.故選A.【點睛】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).10、C【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:1.21萬=1.21×104,故選:C.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、(3,2).【解析】

根據(jù)題意得出y軸位置,進而利用正多邊形的性質(zhì)得出E點坐標.【詳解】解:如圖所示:∵A(0,a),∴點A在y軸上,∵C,D的坐標分別是(b,m),(c,m),∴B,E點關于y軸對稱,∵B的坐標是:(﹣3,2),∴點E的坐標是:(3,2).故答案為:(3,2).【點睛】此題主要考查了正多邊形和圓,正確得出y軸的位置是解題關鍵.12、1;【解析】分析:根據(jù)輔助線做法得出CF⊥AB,然后根據(jù)含有30°角的直角三角形得出AB和BF的長度,從而得出AF的長度.詳解:∵根據(jù)作圖法則可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.點睛:本題主要考查的是含有30°角的直角三角形的性質(zhì),屬于基礎題型.解題的關鍵就是根據(jù)作圖法則得出直角三角形.13、1【解析】

根據(jù)平行四邊形定義得:DC∥AB,由兩角對應相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的長.【詳解】∵四邊形ABCD是平行四邊形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q為對角線AC的三等分點,∴,,設CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案為1.【點睛】本題考查了平行四邊形的性質(zhì)和相似三角形的判定和性質(zhì),熟練掌握兩角對應相等,兩三角形相似的判定方法是關鍵.14、-3【解析】試題解析:∵即∴原式故答案為15、【解析】

根據(jù)同弧或等弧所對的圓周角相等來求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點睛】本題利用了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念求解.16、13【解析】試題解析:因為正方形AECF的面積為50cm2,所以因為菱形ABCD的面積為120cm2,所以所以菱形的邊長故答案為13.三、解答題(共8題,共72分)17、(1)LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個;(2)1350元.【解析】

1)設該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個,利用該商場購進了LED燈泡與普通白熾燈泡共300個和銷售完這批燈泡后可以獲利3200元列方程組,然后解方程組即可;

(2)設該商場購進LED燈泡a個,則購進普通白熾燈泡(120-a)個,這批燈泡的總利潤為W元,利用利潤的意義得到W=(60-45)a+(30-25)(120-a)=10a+1,再根據(jù)銷售完這批燈泡時獲利最多且不超過進貨價的30%可確定a的范圍,然后根據(jù)一次函數(shù)的性質(zhì)解決問題.【詳解】(1)設該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個.根據(jù)題意,得解得答:該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個.(2)設該商場再次購進LED燈泡a個,這批燈泡的總利潤為W元.則購進普通白熾燈泡(120﹣a)個.根據(jù)題意得W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,∵k=10>0,∴W隨a的增大而增大,∴a=75時,W最大,最大值為1350,此時購進普通白熾燈泡(120﹣75)=45個.答:該商場再次購進LED燈泡75個,購進普通白熾燈泡45個,這批燈泡的總利潤為1350元.【點睛】本題考查了二元一次方程組和一次函數(shù)的應用,根據(jù)實際問題找到等量關系列方程組和建立一次函數(shù)模型,利用一次函數(shù)的性質(zhì)和自變量的取值范圍解決最值問題是解題的關鍵.18、();()此時每天利潤為元.【解析】試題分析:(1)根據(jù)題意用待定系數(shù)法即可得解;(2)把x=35代入(1)中的解析式,得到銷量,然后再乘以每件的利潤即可得.試題解析:()設,將,和,代入,得:,解得:,∴;()將代入()中函數(shù)表達式得:,∴利潤(元),答:此時每天利潤為元.19、(1)袋子中白球有2個;(2).【解析】試題分析:(1)設袋子中白球有x個,根據(jù)概率公式列方程解方程即可求得答案;(2)根據(jù)題意畫出樹狀圖,求得所有等可能的結果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.試題解析:(1)設袋子中白球有x個,根據(jù)題意得:=,解得:x=2,經(jīng)檢驗,x=2是原分式方程的解,∴袋子中白球有2個;(2)畫樹狀圖得:∵共有9種等可能的結果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.考點:列表法與樹狀圖法;概率公式.20、,1+【解析】

運用公式化簡,再代入求值.【詳解】原式===,當x=+1時,原式=.【點睛】考查分式的化簡求值、整式的化簡求值,解答本題的關鍵是明確它們各自的計算方法.21、(1)證明見解析;(2)補圖見解析;.【解析】

根據(jù)等腰三角形的性質(zhì)得到,等量代換得到,根據(jù)余角的性質(zhì)即可得到結論;根據(jù)平行線的判定定理得到AD∥BG,推出四邊形ABGD是平行四邊形,得到平行四邊形ABGD是菱形,設AB=BG=GD=AD=x,解直角三角形得到,過點B作于H,根據(jù)平行四邊形的面積公式即可得到結論.【詳解】解:,,,,,,,,;補全圖形,如圖所示:,,,,,,,,,且,,,,四邊形ABGD是平行四邊形,,平行四邊形ABGD是菱形,設,,,,過點B作于H,..故答案為(1)證明見解析;(2)補圖見解析;.【點睛】本題考查等腰三角形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定和性質(zhì),解題的關鍵是正確的作出輔助線.22、(1)y=﹣,y=﹣x+2;(2)6;(3)當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【解析】

(1)利用待定系數(shù)法,即可得到反比例函數(shù)和一次函數(shù)的解析式;(2)利用一次函數(shù)解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類討論:當AO為等腰三角形腰與底時,求出點E坐標即可.【詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點:n=3×(﹣2)=﹣6,所以反比例函數(shù)解析式為:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分別代入y=kx+b,得:,解得:,所以一次函數(shù)解析式為:y=﹣x+2;(2)當y=0時,﹣x+2=0,解得:x=4,則C(4,0),所以;(3)當OE3=OE2=AO=,即E2(﹣,0),E3(,0);當OA=AE1=時,得到OE1=2OD=4,即E1(﹣4,0);當AE4=OE4時,由A(﹣2,3),O(0,0),得到直線AO解析式為y=﹣x,中點坐標為(﹣1,1.5),令y=0,得到y(tǒng)=﹣,即E4(﹣,0),綜上,當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟練掌握各自的性質(zhì)是解題的關鍵.23、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費用最少;(3)當a=3時,三種方案的費用一樣,都是2240萬元;當a>3時,取m=48時費用最?。划?<a<3時,取m=50時費用最省.【解析】試題分析:(1)設甲種套房每套提升費用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數(shù)關系式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論