




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市朝陽(yáng)區(qū)日壇中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)題測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,一扇窗戶打開(kāi)后,用窗鉤AB可將其固定()A.三角形的穩(wěn)定性B.兩點(diǎn)之間線段最短C.四邊形的不穩(wěn)定性D.三角形兩邊之和大于第三邊2、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結(jié)論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE3、如圖,在正方形ABCD中,E,F(xiàn)分別為AD,CD上的點(diǎn),且AE=CF,則下列說(shuō)法正確的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠24、下列各組線段中,能構(gòu)成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、65、如圖,在和中,,,,,連接,交于點(diǎn),連接.下列結(jié)論:①;②;③平分;④平分.其中正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6、如圖,點(diǎn),,,在一條直線上,,,,,,則()A.4 B.5 C.6 D.77、小東要從下面四組木棒中選擇一組制作一個(gè)三角形作品,你認(rèn)為他應(yīng)該選()組.A.,, B.,, C.,, D.,,8、以下列各組長(zhǎng)度的線段為邊,能構(gòu)成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm9、下列長(zhǎng)度的三條線段,能組成三角形的是()A.3,4,8 B.5,6,11 C.1,3,5 D.5,6,1010、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個(gè)仍無(wú)法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,點(diǎn)E,F(xiàn)分別為線段BC,DB上的動(dòng)點(diǎn),BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.2、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點(diǎn)P,則△ABC的面積為_(kāi)____cm2.3、如圖,在中,平分,于點(diǎn)E,若的面積為,則陰影部分的面積為_(kāi)_______.4、已知a,b,c是的三條邊長(zhǎng),化簡(jiǎn)的結(jié)果為_(kāi)______.5、如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為58,△ADC的面積為30,則△ABD的面積等于______.6、如圖,在△ABC中,∠C=90°,AD是BC邊上的中線,交BC于點(diǎn)D,CD=5cm,AC=12cm,則△ABD的面積是__________cm2.7、如圖,已知AB=3,AC=CD=1,∠D=∠BAC=90°,則△ACE的面積是_____.8、如圖,三角形ABC的面積為1,,E為AC的中點(diǎn),AD與BE相交于P,那么四邊形PDCE的面積為_(kāi)_____.9、在△ABC中,三邊為、、,如果,,,那么的取值范圍是_____.10、如圖,∠C=∠D=90°,AC=AD,請(qǐng)寫(xiě)出一個(gè)正確的結(jié)論________.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,M是線段AB上的一點(diǎn),ED是過(guò)點(diǎn)M的一條線段,連接AE、BD,過(guò)點(diǎn)B作BF∥AE交ED于點(diǎn)F,且EM=FM.(1)求證:AE=BF.(2)連接AC,若∠AEC=90°,∠CAE=∠DBF,CD=4,求EM的長(zhǎng).2、平行線是平面幾何中最基本、也是非常重要的圖形.在解決某些幾何問(wèn)題時(shí),若能根據(jù)問(wèn)題的需要,添加適當(dāng)?shù)钠叫芯€,往往能使證明順暢、簡(jiǎn)潔.請(qǐng)根據(jù)上述思想解決問(wèn)題:(1)如圖(1),ABCD,試判斷∠B,∠D與∠E的關(guān)系;(2)如圖(2),已知ABCD,在∠ACD的角平分線上取兩個(gè)點(diǎn)M、N,使得∠AMN=∠ANM,求證:∠CAM=∠BAN.3、如圖,(1),已知△ABC中,∠BAC=90°,,AE是過(guò)點(diǎn)A的一條直線,且B,C在A,E的異側(cè),于點(diǎn)D,于點(diǎn)E(1)試說(shuō)明:;(2)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖(2)位置時(shí),其余條件不變,問(wèn)BD與DE,CE的關(guān)系如何?請(qǐng)直接寫(xiě)出結(jié)果;4、在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖①的位置時(shí),易證△ADC≌△CEB(不需要證明),進(jìn)而得到DE、AD、BE之間的數(shù)量關(guān)系為.(探究)(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖②的位置時(shí),求證:DE=AD-BE.(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖③的位置時(shí),直接寫(xiě)出DE、AD、BE之間的數(shù)量關(guān)系.5、如圖,已知點(diǎn)A,C,D在同一直線上,BC與AF交于點(diǎn)E,AF=AC,AB=DF,AD=BC.(1)求證:∠ACE=∠EAC;(2)若∠B=50°,∠F=110°,求∠BCD的度數(shù).6、如圖,在長(zhǎng)方形ABCD中,AD=3,DC=5,動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿線段AD—DC以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿線段CD—DA以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng).ME⊥PQ于點(diǎn)E,NF⊥PQ于點(diǎn)F,設(shè)運(yùn)動(dòng)的時(shí)間為秒.(1)在運(yùn)動(dòng)過(guò)程中當(dāng)M、N兩點(diǎn)相遇時(shí),求t的值.(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,求DM的長(zhǎng).(用含t的代數(shù)式表示)(3)當(dāng)DEM與DFN全等時(shí),請(qǐng)直接寫(xiě)出所有滿足條件的DN的長(zhǎng).-參考答案-一、單選題1、A【分析】由三角形的穩(wěn)定性即可得出答案.【詳解】一扇窗戶打開(kāi)后,用窗鉤AB可將其固定,故選:A.【點(diǎn)睛】本題考查了三角形的穩(wěn)定性,加上窗鉤AB構(gòu)成了△AOB,而三角形具有穩(wěn)定性是解題的關(guān)鍵.2、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進(jìn)而逐一進(jìn)行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項(xiàng)錯(cuò)誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項(xiàng)錯(cuò)誤;D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).3、C【分析】由“SAS”可證△ABE≌△CBF,可得∠AEB=∠2,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故選:C.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),證明三角形全等是解題的關(guān)鍵.4、C【分析】根據(jù)三角形的三邊關(guān)系定理逐項(xiàng)判斷即可得.【詳解】解:三角形的三邊關(guān)系定理:任意兩邊之和大于第三邊.A、,不能構(gòu)成三角形,此項(xiàng)不符題意;B、,不能構(gòu)成三角形,此項(xiàng)不符題意;C、,能構(gòu)成三角形,此項(xiàng)符合題意;D、,不能構(gòu)成三角形,此項(xiàng)不符題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握三角形的三邊關(guān)系定理是解題關(guān)鍵.5、C【分析】由全等三角形的判定及性質(zhì)對(duì)每個(gè)結(jié)論推理論證即可.【詳解】∵∴∴又∵,∴∴故①正確∵∴由三角形外角的性質(zhì)有則故②正確作于,于,如圖所示:則°,在和中,,∴,∴,在和中,∴,∴∴平分故④正確假設(shè)平分則∵∴即由④知又∵為對(duì)頂角∴∴∴∴在和中,∴即AB=AC又∵故假設(shè)不符,故不平分故③錯(cuò)誤.綜上所述①②④正確,共有3個(gè)正確.故選:C.【點(diǎn)睛】本題考查了全等三角形的判定及性質(zhì),靈活的選擇全等三角形的判定的方法是解題的關(guān)鍵,從判定兩個(gè)三角形全等的方法可知,要判定兩個(gè)三角形全等,需要知道這兩個(gè)三角形分別有三個(gè)元素(其中至少一個(gè)元素是邊)對(duì)應(yīng)相等,這樣就可以利用題目中的已知邊角迅速、準(zhǔn)確地確定要補(bǔ)充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個(gè)三角形全等的思路.6、A【分析】由題意易得,然后可證,則有,進(jìn)而問(wèn)題可求解.【詳解】解:∵,∴,∵,,∴,∴,∵,∴;故選A.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.7、D【分析】利用三角形的三邊關(guān)系,即可求解.【詳解】解:根據(jù)三角形的三邊關(guān)系,得:A、,不能組成三角形,不符合題意;B、,不能夠組成三角形,不符合題意;C、,不能夠組成三角形,不符合題意;D、,能夠組成三角形,符合題意.故選:D【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊只差小于第三邊是解題的關(guān)鍵.8、C【分析】根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】解:A、1+1=2<8,不能組成三角形,故此選項(xiàng)不合題意;B、3+3=6,不能組成三角形,故此選項(xiàng)不符合題意;C、3+4=7>5,能組成三角形,故此選項(xiàng)符合題意;D、1+2=3,不能組成三角形,故此選項(xiàng)不合題意;故選:C.【點(diǎn)睛】本題考查了構(gòu)成三角形的條件,掌握“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解題的關(guān)鍵.9、D【分析】根據(jù)圍成三角形的條件逐個(gè)分析求解即可.【詳解】解:A、∵,∴3,4,8不能?chē)扇切?,不符合題意;B、∵,∴5,6,11不能?chē)扇切?,不符合題意;C、∵,∴1,3,5不能?chē)扇切?,不符合題意;D、∵,∴5,6,10能?chē)扇切危项}意,故選:D.【點(diǎn)睛】此題考查了圍成三角形的條件,解題的關(guān)鍵是熟練掌握圍成三角形的條件.圍成三角形的條件:兩邊之和大于第三邊,兩邊只差小于第三邊.10、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個(gè)判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項(xiàng)符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;故選:A.【點(diǎn)睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.二、填空題1、①連接,作;②以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn)【分析】按照①連接,作;②以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn)的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);如圖,點(diǎn)即為所求.故答案為:①連接,作;②以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長(zhǎng)為半徑畫(huà)弧,交于點(diǎn).【點(diǎn)睛】本題考查了作一個(gè)角等于已知角、兩點(diǎn)之間線段最短、作線段、全等三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握尺規(guī)作圖的方法是解題關(guān)鍵.2、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質(zhì)得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長(zhǎng)AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:等底等高的三角形的面積相等.3、6【分析】證點(diǎn)E為AD的中點(diǎn),可得△ACE與△ACD的面積之比,同理可得△ABE和△ABD的面積之比,即可解答出.【詳解】解:如圖,平分,于點(diǎn)E,∴,,∵,∴≌∴,∴S△ACE:S△ACD=1:2,同理可得,S△ABE:S△ABD=1:2,∵S△ABC=12,∴陰影部分的面積為S△ACE+S△ABE=S△ABC=×12=6.故答案為6.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì)及三角形面積的等積變換,解題關(guān)鍵是明確三角形的中線將三角形分成面積相等的兩部分.4、2b【分析】由題意根據(jù)三角形三邊關(guān)系得到a+b-c>0,b-a-c<0,再去絕對(duì)值,合并同類(lèi)項(xiàng)即可求解.【詳解】解:∵a,b,c是的三條邊長(zhǎng),∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案為:2b.【點(diǎn)睛】本題考查的是三角形的三邊關(guān)系以及去絕對(duì)值和整式加減運(yùn)算,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.5、28【分析】延長(zhǎng)交于,由證明,得出,得出,進(jìn)而得出,即可得出結(jié)果.【詳解】如圖所示,延長(zhǎng)交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:28.【點(diǎn)睛】此題考查全等三角形的判定與性質(zhì),三角形面積的計(jì)算,證明三角形全等得出是解題關(guān)鍵.6、30【分析】根據(jù)三角形的面積公式求出△ACD的面積,利用三角形中線的性質(zhì)即可求解.【詳解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面積為(cm2),∵AD是BC邊上的中線,∴△ACD的面積=△ABD的面積為(cm2),故答案為:30.【點(diǎn)睛】本題考查了三角形的面積和三角形中線的性質(zhì),關(guān)鍵是根據(jù)三角形的中線把三角形分成面積相等的兩部分解答.7、##【分析】先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質(zhì)可得,然后利用三角形的面積公式即可得.【詳解】解:在和中,,,,則的面積是,故答案為:.【點(diǎn)睛】本題考查了三角形全等的判定定理與性質(zhì),熟練掌握三角形全等的判定方法是解題關(guān)鍵.8、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點(diǎn),得△BDP的面積是2y,△APE的面積是x,進(jìn)而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點(diǎn),∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點(diǎn)睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個(gè)三角形的面積比等于它們的底的比;等底的兩個(gè)三角形的面積比等于它們的高的比.9、4<x<28【分析】根據(jù)三角形三邊的關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊解答即可;【詳解】解:由題意得:解得:4<x<28.故答案為:4<x<28【點(diǎn)睛】本題考查了三角形三邊的關(guān)系,熟練掌握三角形三邊的關(guān)系是解題的關(guān)鍵.10、BC=BD【分析】根據(jù)HL證明△ACB和△ADB全等解答即可.【詳解】解:在Rt△ACB和Rt△ADB中,,∴△ACB≌△ADB(HL),∴BC=BD,故答案為:BC=BD(答案不唯一).【點(diǎn)睛】此題考查全等三角形的判定和性質(zhì),關(guān)鍵是根據(jù)HL證明△ACB和△ADB全等解答.三、解答題1、(1)見(jiàn)解析;(2)2【分析】(1)根據(jù)平行線的性質(zhì)和全等三角形的判定證明△AME≌△BMF即可證得結(jié)論;(2)由△AME≌△BMF證得AE=BF,EM=FM,∠BFM=∠AEC=90°,根據(jù)全等三角形的判定證明△AEC≌△BFD,則有EC=FD,即EF=CD=4,即可求解.【詳解】解:(1)∵BF∥AE,∴∠EAM=∠FBM,又∠AME=∠BMF,EM=FM,∴△AME≌△BMF(ASA),∴AE=BF;(2)∵△AME≌△BMF,∴AE=BF,EM=FM,∠BFM=∠AEC=90°,∴∠AEC=∠BFD=90°,又∠CAE=∠DBF,∴△AEC≌△BFD(ASA),∴EC=FD,即EF=CD=4,∴EM=EF=2.【點(diǎn)睛】本題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解答的關(guān)鍵.2、(1)∠BED=∠B+∠D;(2)證明見(jiàn)詳解.【分析】(1)作EF∥AB,證明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可證明∠BED=∠B+∠D;(2)根據(jù)(1)結(jié)論得到∠N=∠BAN+∠DCN,進(jìn)而得到∠AMN=∠BAN+∠DCN,根據(jù)三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根據(jù)∠DCN=∠CAN,即可證明∠CAM=∠BAN.【詳解】解:如圖1,作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D;(2)證明:∵AB∥CD,∴由(1)得∠N=∠BAN+∠DCN,∵∠AMN=∠ANM,∴∠AMN=∠BAN+∠DCN,∵∠AMN是△ACM外角,∴∠AMN=∠ACM+∠CAM,∴∠BAN+∠DCN=∠ACM+∠CAM,∵CN平分∠ACD,∴∠DCN=∠CAN,∴∠CAM=∠BAN.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的定義,三角形的外角定理等知識(shí),熟知相關(guān)定理并根據(jù)題意添加輔助線進(jìn)行角的轉(zhuǎn)化是解題關(guān)鍵.3、(1)證明見(jiàn)解析;(2)BD=DE-CE,理由見(jiàn)解析.【分析】(1)根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因?yàn)锳E=AD+DE,所以BD=DE+CE;(2)根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因?yàn)锳D+AE=BD+CE,所以BD=DE-CE.【詳解】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)與、的數(shù)量關(guān)系是BD=DE-CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE-CE.【點(diǎn)睛】此題主要考查全等三角形的判定和性質(zhì),常用的判定方法有SSS,SAS,AAS,HL等.這種類(lèi)型的題目經(jīng)??嫉?,要注意掌握.4、(1)DE=AD+BE;(2)見(jiàn)解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠BEC=90°,因?yàn)椤螦CD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根據(jù)AAS即可得到△ADC≌△CEB,得到AD=CE,CD=BE,即可求出答案;(2)與(1)證法類(lèi)似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;(3)與(1)(2)證法類(lèi)似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;【詳解】解:(1)證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∵DC+CE=DE,∴DE=AD+BE.(2)證明:∵AD⊥MN,BE⊥MN,∵∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.∴CE=AD,CD=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD,理由:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD(或AD=BE-DE,BE=AD+DE等).【點(diǎn)睛】本題考查了鄰補(bǔ)角的意義,同角的余角相等,直角三角形的性質(zhì),全等三角形的判定和性質(zhì)等知識(shí)點(diǎn),能根據(jù)已知證出符合全等的條
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025關(guān)于審理涉及國(guó)有建設(shè)用地使用權(quán)轉(zhuǎn)讓合同糾紛案件適用法律問(wèn)題的解釋學(xué)習(xí)筆記
- 私人餐飲員工合同范本
- 房屋評(píng)估賣(mài)房合同范本
- 2025華帝供應(yīng)商基礎(chǔ)供貨合同
- 摩托裝備寄售合同范本
- 尼龍顆粒銷(xiāo)售合同范本
- 商場(chǎng)樓頂維修合同范本
- 駱駝馴養(yǎng)合同范本
- 珠寶貸款的合同范本
- 餐飲 店鋪轉(zhuǎn)讓合同范本
- 香菇多糖生產(chǎn)工藝創(chuàng)新-洞察分析
- 箱泵一體化泵站設(shè)計(jì)圖集
- 三上10《公共場(chǎng)所文明言行》道德法治教學(xué)設(shè)計(jì)
- 《電器火災(zāi)的防范》課件
- 路燈CJJ檢驗(yàn)批范表
- 農(nóng)村廁所改造合同書(shū)完整版
- 建筑工程安全管理提升方案
- 對(duì)新員工保密基本培訓(xùn)
- GB/T 6553-2024嚴(yán)酷環(huán)境條件下使用的電氣絕緣材料評(píng)定耐電痕化和蝕損的試驗(yàn)方法
- 2024年蘇教版四年級(jí)數(shù)學(xué)上冊(cè)全冊(cè)教案
- 2024新科普版英語(yǔ)七年級(jí)上單詞默寫(xiě)表
評(píng)論
0/150
提交評(píng)論