




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、小張同學去展覽館看展覽,該展覽館有A、B兩個驗票口(可進可出),另外還有C、D兩個出口(只出不進).則小張從不同的出入口進出的概率是()A. B. C. D.2、如圖,從⊙O外一點P引圓的兩條切線PA,PB,切點分別是A,B,若∠APB=60°,PA=5,則弦AB的長是()A. B. C.5 D.53、如圖,中,,O是AB邊上一點,與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.4、下列事件是隨機事件的是()A.拋出的籃球會下落B.經過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內角和是D.400人中有兩人的生日在同一天5、往直徑為78cm的圓柱形容器內裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm6、如圖,在中,,,將繞點C逆時針旋轉90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°7、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.8、下列判斷正確的個數(shù)有()①直徑是圓中最大的弦;②長度相等的兩條弧一定是等??;③半徑相等的兩個圓是等圓;④弧分優(yōu)弧和劣??;⑤同一條弦所對的兩條弧一定是等?。瓵.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、《九章算術》是我國古代的數(shù)學名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.2、如圖,⊙O的半徑為2,△ABC是⊙O的內接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.3、如圖,在平行四邊形中,,,,以點為圓心,為半徑的圓弧交于點,連接,則圖中黑色陰影部分的面積為________.(結果保留)4、在圓內接四邊形ABCD中,,則的度數(shù)為______.5、有五張正面分別標有數(shù)字,,0,1,2的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片放回洗勻后從中再任取一張,將該卡片上的數(shù)字記為,則為非負數(shù)的概率為________.6、如圖,PA,PB是的切線,切點分別為A,B.若,,則AB的長為______.7、數(shù)學興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉60°,得到線段AP,連接CP,線段CP的最小值是______.三、解答題(7小題,每小題0分,共計0分)1、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學的一項重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學過的圖形變換,在圖2,3的方格紙中設計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點均在方格紙的格點上,且四個三角形互不重疊,不必涂陰影;②圖2中所設計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.2、在直角坐標平面內,三個頂點的坐標分別為、、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)將向下平移4個單位長度得到的,則點的坐標是____________;(2)以點B為位似中心,在網(wǎng)格上畫出,使與位似,且位似比為2:1,求點的坐標;(3)若是外接圓,求的半徑.3、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當BF+CE最小時,直接出的值.4、在平面直角坐標系xOy中,的半徑為2.點P,Q為外兩點,給出如下定義:若上存在點M,N,使得P,Q,M,N為頂點的四邊形為矩形,則稱點P,Q是的“成對關聯(lián)點”.(1)如圖,點A,B,C,D橫、縱坐標都是整數(shù).在點B,C,D中,與點A組成的“成對關聯(lián)點”的點是______;(2)點在第一象限,點F與點E關于x軸對稱.若點E,F(xiàn)是的“成對關聯(lián)點”,直接寫出t的取值范圍;(3)點G在y軸上.若直線上存在點H,使得點G,H是的“成對關聯(lián)點”,直接寫出點G的縱坐標的取值范圍.5、如圖,四邊形ABCD內接于⊙O,AC是直徑,點C是劣弧BD的中點.(1)求證:.(2)若,,求BD.6、如圖,AB是⊙O的直徑,點C是⊙O上一點,連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點F,AC與OD相交于點E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長.7、如圖,在中,,以AC為直徑的半圓交斜邊AB于點D,E為BC的中點,連結DE,CD.過點D作于點F.(1)求證:DE是的切線;(2)若,,求的半徑.-參考答案-一、單選題1、D【分析】先畫樹狀圖得到所有的等可能性的結果數(shù),然后找到小張從不同的出入口進出的結果數(shù),最后根據(jù)概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結果數(shù),其中小張從不同的出入口進出的結果數(shù)有6種,∴P小張從不同的出入口進出的結果數(shù),故選D.【點睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.2、C【分析】先利用切線長定理得到PA=PB,再利用∠APB=60°可判斷△APB為等邊三角形,然后根據(jù)等邊三角形的性質求解.【詳解】解:∵PA,PB為⊙O的切線,∴PA=PB,∵∠APB=60°,∴△APB為等邊三角形,∴AB=PA=5.故選:C.【點睛】本題考查了切線長定理以及等邊三角形的判定與性質.此題比較簡單,注意掌握數(shù)形結合思想的應用.3、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,根據(jù)切線的性質得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據(jù)比例的性質求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了相似三角形的判定與性質.4、B【分析】根據(jù)事件的確定性和不確定性,以及隨機事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經過有交通信號燈的路口,遇到紅燈是隨機事件,故此選項符合題意;C.任意畫一個三角形,其內角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關鍵是要明確:事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.5、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據(jù)勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關鍵是根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.6、B【分析】由題意易得,然后根據(jù)三角形外角的性質可求解.【詳解】解:由旋轉的性質可得:,∴;故選B.【點睛】本題主要考查旋轉的性質及三角形外角的性質,熟練掌握旋轉的性質及三角形外角的性質是解題的關鍵.7、B【分析】把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.8、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長度相等的兩條弧一定是等?。还盛诓徽_③半徑相等的兩個圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對的兩條弧可位于弦的兩側,故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點睛】本題考查了圓相關概念,掌握弦與弧的關系以及相關概念是解題的關鍵.二、填空題1、6【分析】依題意,直角三角形性質,結合題意能夠容納的最大為內切圓,結合內切圓半徑,利用等積法求解即可;【詳解】設直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質:可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內切圓的性質,重點在理解題意和利用內切圓半徑求解面積;2、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.3、【分析】過點C作于點H,根據(jù)正弦定義解得CH的長,再由扇形面積公式、三角形的面積公式解題即可.【詳解】解:過點C作于點H,在平行四邊形中,平行四邊形的面積為:,圖中黑色陰影部分的面積為:,故答案為:.【點睛】本題考查平行四邊形的性質、扇形面積等知識,是基礎考點,掌握相關知識是解題關鍵.4、110°【分析】根據(jù)圓內接四邊形對角互補,得∠D+∠B=180°,結合已知求解即可.【詳解】∵圓內接四邊形對角互補,∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點睛】本題考查了圓內接四邊形互補的性質,熟練掌握并運用性質是解題的關鍵.5、【分析】求出為負數(shù)的事件個數(shù),進而得出為非負數(shù)的事件個數(shù),然后求解即可.【詳解】解:兩次取卡片共有種可能的事件;兩次取得卡片數(shù)字乘積為負數(shù)的事件為等8種可能的事件∴為非負數(shù)共有種∴為非負數(shù)的概率為故答案為:.【點睛】本題考查了列舉法求隨機事件的概率.解題的關鍵在于求出事件的個數(shù).6、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點睛】本題考查了等邊三角形的判定和切線長定理,解題的關鍵是作出相應輔助線.7、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質,垂線段最短,全等三角形的判定和性質等知識,解題的關鍵是學會用轉化的思想思考問題.三、解答題1、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個直角三角形的頂點均在方格紙的格點上,且四個三角形不重疊,是軸對稱圖形;②所設計的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是中心對稱圖形,故答案為:中心;(2)如圖2是軸對稱圖形而不是中心對稱圖形;圖3既是軸對稱圖形,又是中心對稱圖形.【點睛】本題考查利用旋轉或軸對稱設計方案,關鍵是理解旋轉和軸對稱的概念,按要求作圖即可.2、(1)(2,-2)(2)圖見解析,(1,0)(3)【分析】(1)根據(jù)平移的性質得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質得出對應點位置,從而得到點的坐標;(3)證明是直角三角形,根據(jù)直角三角形外切圓半徑公式計算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設其半徑為R;則【點睛】本題考查作圖—平移變換,作圖—位似變換、三角形外接圓,正確理解位似變換的定義,會進行位似變換的作圖是解題的關鍵.3、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結AE,在CE上截取EJ=AE,連結AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結AE,在CE上截取EJ=AE,連結AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點共線,∴BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點共線,∴BF+CE=BF+FC′≥BC′,∴點F在BC′上時,BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點睛】本題考查等腰直角三角形性質,三角形外角性質,30°直角三角形性質,勾股定理,三角形全等判定與性質,四點共圓,同弧所對圓周角性質,三角形相似判定與性質,圖形旋轉性質,最短路徑問題,角平分線性質,分類討論思想,本題難度大,應用知識多,是中考壓軸題,利用輔助線作出正確圖形是解題關鍵.4、(1)B和C;(2);(3)【分析】(1)根據(jù)圖形可確定與點A組成的“成對關聯(lián)點”的點;(2)如圖,點E在直線上,點F在直線上,當點E在線段上,點F在線段上時,有的“成對關聯(lián)點”,求出即可得出的取值范圍;(3)分類討論:點G在上,點G在的下方和點G在的上方,構造的“成對關聯(lián)點”,即可求出的取值范圍.【詳解】(1)如圖所示:在點B,C,D中,與點A組成的“成對關聯(lián)點”的點是B和C,故答案為:B和C;(2)∵∴在直線上,∵點F與點E關于x軸對稱,∴在直線,如下圖所示:直線和與分別交于點,,與直線分別交于,,由題可得:,當點E在線段上時,有的“成對關聯(lián)點”∴;(3)如圖,當點G在上時,軸,在上不存在這樣的矩形;如圖,當點G在下方時,也不存在這樣的矩形;如圖,當點G在上方時,存在這樣的矩形GMNH,當恰好只能構成一個矩形時,設,直線與y軸相交于點K,則,,,,,∴,即,∴,解得:或(舍),綜上:當時,點G,H是的“成對關聯(lián)點”.【點睛】本題考查幾何圖形綜合問題,屬于中考壓軸題,掌握“成對關聯(lián)點”的定義是解題的關鍵.5、(1)見詳解;(2)【分析】(1)由題意及垂徑定理可知AC垂直平分BD,進而問題可求解;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教練專業(yè)測試題及答案
- 2025年和田地區(qū)教師招聘考試筆試試題(含答案)
- mapjava面試題及答案
- 東北護士考試題及答案
- 2025年貴州畢節(jié)工業(yè)職業(yè)技術學院招聘考試筆試試題(含答案)
- 2025年廣東省電工技師職業(yè)技能理論考試練習題庫(含答案)
- 2024年山東臨沂中考道德與法治試題及答案
- 資產評估師財務會計應收賬款考試題(含答案)
- 數(shù)字化物流商業(yè)運營 習題答案-模塊七
- 2024年醫(yī)務人員查對制度考試題(含答案)
- 《患者安全目標解讀》課件
- 甲狀腺功能亢進癥課件
- 鋰離子電池正極材料研究進展
- 二手房屋買賣物品交接清單
- 技師論文 變頻器的維修與保養(yǎng)
- 非標自動化設備項目進度表
- 診斷學教學胸部查體
- 橋梁安全事故案例警示
- SB/T 10460-2008商用電開水器
- GB/T 9124.1-2019鋼制管法蘭第1部分:PN系列
- GA 1800.2-2021電力系統(tǒng)治安反恐防范要求第2部分:火力發(fā)電企業(yè)
評論
0/150
提交評論