2025年河南省汝州市中考數(shù)學模擬試題及答案詳解(奪冠)_第1頁
2025年河南省汝州市中考數(shù)學模擬試題及答案詳解(奪冠)_第2頁
2025年河南省汝州市中考數(shù)學模擬試題及答案詳解(奪冠)_第3頁
2025年河南省汝州市中考數(shù)學模擬試題及答案詳解(奪冠)_第4頁
2025年河南省汝州市中考數(shù)學模擬試題及答案詳解(奪冠)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南省汝州市中考數(shù)學模擬試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、若點P(2,)與點Q(,)關于原點對稱,則m+n的值分別為(

)A. B. C.1 D.52、下列一元二次方程中,有兩個不相等實數(shù)根的是(

)A. B.x2+2x+4=0 C.x2-x+2=0 D.x2-2x=03、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.4、2019年女排世界杯于9月在日本舉行,中國女排以十一連勝的驕人成績衛(wèi)冕冠軍,充分展現(xiàn)了團隊協(xié)作、頑強拼搏的女排精神.如圖是某次比賽中墊球時的動作,若將墊球后排球的運動路線近似的看作拋物線,在同一豎直平面內(nèi)建立如圖所示的直角坐標系,已知運動員墊球時(圖中點A)離球網(wǎng)的水平距離為5米,排球與地面的垂直距離為0.5米,排球在球網(wǎng)上端0.26米處(圖中點B)越過球網(wǎng)(女子排球賽中球網(wǎng)上端距地面的高度為2.24米),落地時(圖中點)距球網(wǎng)的水平距離為2.5米,則排球運動路線的函數(shù)表達式為(

)A. B.C. D.5、從下列命題中,隨機抽取一個是真命題的概率是(

)(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)兩條對角線長分別為6和8的菱形的周長是40.A. B. C. D.1二、多選題(5小題,每小題3分,共計15分)1、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關系如下表:t01234567…h(huán)08141820201814…下列結論正確的是(

)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m2、下列命題正確的是(

)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經(jīng)過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦3、二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標為(-1,n),其部分圖象如圖所示.下列結論正確的是(

)A.B.C.若,是拋物線上的兩點,則D.關于x的方程無實數(shù)根4、關于x的一元二次方程(k-1)x2+4x+k-1=0有兩個相等的實數(shù)根,則k的值為(

)A.1 B.0 C.3 D.-35、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為______.2、在平面直角坐標系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.3、關于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.4、如圖,在甲,,,,以點為圓心,的長為半徑作圓,交于點,交于點,陰影部分的面積為__________(結果保留).5、如圖,,,是上的三個點,四邊形是平行四邊形,連接,,若,則_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,AB是的直徑,弦于點E.若,,求弦CD.2、解下列方程:(1);(2).3、已知關于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關系;(3)若將拋物線沿軸翻折得到新拋物線,當時,新拋物線對應的函數(shù)有最小值3,求的值.4、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當直線l與這個新圖象有且只有一個公共點時,d=;(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.5、已知關于的一元二次方程有實數(shù)根.(1)求的取值范圍.(2)若該方程的兩個實數(shù)根為、,且,求的值.6、閱讀下面內(nèi)容,并答題:我們知道,計算n邊形的對角線條數(shù)公式為n(n-3).如果一個n邊形共有20條對角線,那么可以得到方程n(n-3)=20.解得n=8或n=-5(舍去),∴這個n邊形是八邊形.根據(jù)以上內(nèi)容,問:(1)若一個多邊形共有9條對角線,求這個多邊形的邊數(shù);(2)小明說:“我求得一個n邊形共有10條對角線”,你認為小明同學的說法正確嗎?為什么?-參考答案-一、單選題1、B【解析】【分析】根據(jù)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù)解答.【詳解】解:∵P(2,-n)與點Q(-m,-3)關于原點對稱,∴2=-(-m),-n=-(-3),∴m=2,n=-3,∴.故選:B.【考點】本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律.2、D【解析】【分析】逐一分析四個選項中方程的根的判別式的符號,由此即可得出結論.【詳解】A.此方程判別式,方程有兩個相等的實數(shù)根,不符合題意;B.此方程判別式方程沒有實數(shù)根,不符合題意;C.此方程判別式,方程沒有實數(shù)根,不符合題意;D.此方程判別式,方程有兩個不相等的實數(shù)根,符合題意;故答案為:D.【考點】此題考查了一元二次方程根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.3、C【解析】【分析】根據(jù)切線的性質(zhì),連接過切點的半徑,構造正方形求解即可.【詳解】如圖所示:設油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關鍵是理解和掌握切線的性質(zhì).4、A【解析】【分析】由題意可知點A坐標為(-5,0.5),點B坐標為(0,2.5),點C坐標為(2.5,0),設排球運動路線的函數(shù)表達式為:y=ax2+bx+c,將點A、B、C的坐標代入得關于a、b、c的三元一次方程組,解得a、b、c的值,則函數(shù)解析式可得,從而問題得解.【詳解】解:由題意可知點A坐標為(-5,0.5),點B坐標為(0,2.5),點C坐標為(2.5,0)設排球運動路線的函數(shù)解析式為:y=ax2+bx+c,∵排球經(jīng)過A、B、C三點,,解得:,∴排球運動路線的函數(shù)解析式為,故選:A.【考點】本題考查了根據(jù)實際問題列二次函數(shù)關系式并求得關系式,數(shù)形結合并明確二次函數(shù)的一般式是解題的關鍵.5、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)菱形的對角線長為6和8根據(jù)菱形的性質(zhì),對角線互相垂直且平分,利用勾股定理可求得菱形的邊長為5,則菱形的周長為,是假命題則隨機抽取一個是真命題的概率是,故選:C.【考點】本題考查了命題的真假,概率,菱形的性質(zhì),無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關鍵是運用所學知識判斷各個命題的真假.二、多選題1、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應用、求出拋物線的解析式是解題的關鍵,屬于中考常考題型.2、ABD【解析】【分析】根據(jù)垂徑定理及其推論進行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經(jīng)過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關鍵.3、CD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)及與x軸另一交點的位置,即可判定A;當x=2時,即可判定B;根據(jù)對稱性及二次函數(shù)的性質(zhì),可判定C;根據(jù)平移后與x軸有無交點,可判定D.【詳解】解:由圖象可知:該二次函數(shù)圖象的對稱軸為直線,∴b=2a,由圖象可知:該二次函數(shù)圖象與x軸的左側交點在-3與-2之間,故與x軸的另一個交點在0與1之間,∴當x=1時,y<0,即a+b+c<0,3a+c<0,故A錯誤;當x=-2時,y>0,即4a-2b+c>0,故B錯誤;點關于對稱軸對稱的點的坐標為,即,在對稱軸的左側y隨x的增大而增大,故,故C正確;該二次函數(shù)的頂點坐標為(?1,n),將函數(shù)向下平移n+1個單位,函數(shù)圖象與x軸無交點,∴方程無實數(shù)根,故D正確,故選:CD.【考點】本題考查了二次函數(shù)圖象與性質(zhì),根據(jù)二次函數(shù)的圖象判定式子是否成立,解題的關鍵是從圖象中找到相關信息.4、C【解析】【分析】由方程有兩個相等的實數(shù)根,根據(jù)根的判別式可得到關于k的方程,則可求得k的值.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有兩個相等的實數(shù)根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故選C.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.5、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標函數(shù)圖象到原函數(shù)圖象方向正好相反.三、填空題1、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對角互補是解此題的關鍵.2、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.3、且【解析】【分析】若一元二次方程有兩個不相等的實數(shù)根,則△=b2-4ac>0,建立關于k的不等式,求得k的取值范圍,還要使二次項系數(shù)不為0.【詳解】∵方程有兩個不相等的實數(shù)根,∴解得:,又二次項系數(shù)故答案為且【考點】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.4、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點】本題考查的是扇形面積計算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關鍵.5、64【解析】【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【考點】本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握圓周角定理是解答本題的關鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.四、解答題1、【解析】【分析】連接OC,如圖,根據(jù)垂徑定理得到CE=DE,然后利用勾股定理計算出CE,從而得到CD的長.【詳解】解:連接OC,如圖,∵AB為直徑,弦CD⊥AB,∴CE=DE,∵AB=8,∴OA=OC=4,∴OE=OA-AE=4-1=3,在Rt△OCE中,CE=,∴CD=2CE=.【考點】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚?、(1),(2),【解析】【分析】(1)將分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)將化簡得到,分解因式得到(x-3)(x+1)=0,得到x-3=0,x+1=0,求出,.(1),(x-2)(x-4)=0,x-2=0,x-4=0,x=2或x=4,∴,;(2)(2).,(x-3)(x+1)=0,x-3=0,x+1=0,x=3或x=-1,∴,.【考點】本題考查了解一元二次方程,解決問題的關鍵是把方程化成一般形式,用分解因式的方法解答.3、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當拋物線開口向上時,誰離對稱軸遠誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數(shù),方程有兩個不相等的實數(shù)根∴無論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠對應的函數(shù)值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當時,有最小值∴解得,∵∴②若,即,則當時,有最小值-1不合題意,舍去③若,,則當時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關系來確定二次函數(shù)的最值是解本題的關鍵.4、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據(jù)方程有兩個相等的實根求出P的坐標,然后求解即可;(3)(4)根據(jù)(2)求出的P點坐標進行數(shù)形結合畫圖找出d的取值范圍即可.【詳解】解:(1)當直線l經(jīng)過點A(-3,0)時,d=;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點P,則點P的橫坐標恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個相等實數(shù)根,解△=9+8(2d+6)=0得d=,∴點P的坐標為().①當直線l經(jīng)過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;②當直線l經(jīng)過點P()時,直線l與這個新圖象有且只有三個公共點,解得d=;

∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經(jīng)過點A(-3,0)開始向下平移到直線l經(jīng)過點P()的過程中,直線l與這個新圖象有且只有兩個公共點,可得<d<②直線l從經(jīng)過點P()繼續(xù)向下平移的過程中,直線l與這個新圖象有且只有兩個公共點,可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論