三年高考(2025-2026)數(shù)學(文)真題分項版分析-專題03導數(shù)_第1頁
三年高考(2025-2026)數(shù)學(文)真題分項版分析-專題03導數(shù)_第2頁
三年高考(2025-2026)數(shù)學(文)真題分項版分析-專題03導數(shù)_第3頁
三年高考(2025-2026)數(shù)學(文)真題分項版分析-專題03導數(shù)_第4頁
三年高考(2025-2026)數(shù)學(文)真題分項版分析-專題03導數(shù)_第5頁
已閱讀5頁,還剩62頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

三年高考(2025-2026)數(shù)學(文)試題分項版解析第三章導數(shù)一、選擇題1.【2025高考北京,文8】某輛汽車每次加油都把油箱加滿,下表記錄了該車相鄰兩次加油時的情況.加油時間加油量(升)加油時的累計里程(千米)SKIPIF1<0年SKIPIF1<0月SKIPIF1<0日SKIPIF1<0SKIPIF1<0SKIPIF1<0年SKIPIF1<0月SKIPIF1<0日SKIPIF1<0SKIPIF1<0注:“累計里程“指汽車從出廠開始累計行駛的路程在這段時間內,該車每SKIPIF1<0千米平均耗油量為()A.SKIPIF1<0升B.SKIPIF1<0升C.SKIPIF1<0升D.SKIPIF1<0升【答案】B【考點定位】平均變化率.【名師點晴】本題主要考查的是平均變化率,屬于中檔題.解題時一定要抓住重要字眼“每SKIPIF1<0千米”和“平均”,否則很容易出現(xiàn)錯誤.解此類應用題時一定要萬分小心,除了提取必要的信息外,還要運用所學的數(shù)學知識進行分析和解決問題.2.【2025湖南文9】若SKIPIF1<0,則() A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0 【答案】C【解析】設函數(shù)SKIPIF1<0且SKIPIF1<0,求函數(shù)求導可得SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0符號不確定且SKIPIF1<0,所以函數(shù)SKIPIF1<0單調性不確定,函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞減,則SKIPIF1<0,所以選項C是正確的,故選C.【考點定位】導數(shù)單調性【名師點睛】本題主要考查了利用導數(shù)研究函數(shù)的性質,解決問題的關鍵是根據(jù)所給選項構造對應的函數(shù),利用函數(shù)的性質分析其單調性,對選項作出判斷.3.【2025高考湖南,文8】設函數(shù)SKIPIF1<0,則SKIPIF1<0是()A、奇函數(shù),且在(0,1)上是增函數(shù)B、奇函數(shù),且在(0,1)上是減函數(shù)C、偶函數(shù),且在(0,1)上是增函數(shù)D、偶函數(shù),且在(0,1)上是減函數(shù)【答案】A【考點定位】利用導數(shù)研究函數(shù)的性質【名師點睛】利用導數(shù)研究函數(shù)SKIPIF1<0在(a,b)內的單調性的步驟:(1)求SKIPIF1<0;(2)確認SKIPIF1<0在(a,b)內的符號;(3)作出結論:SKIPIF1<0時為增函數(shù);SKIPIF1<0時為減函數(shù).研究函數(shù)性質時,首先要明確函數(shù)定義域.4.【2025高考陜西版文第10題】如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連續(xù)(相切),已知環(huán)湖彎曲路段為某三次函數(shù)圖像的一部分,則該函數(shù)的解析式為()(A)SKIPIF1<0(B)SKIPIF1<0(C)SKIPIF1<0(D)SKIPIF1<0【答案】SKIPIF1<0【解析】試題分析:由題目圖像可知:該三次函數(shù)過原點,故可設該三次函數(shù)為SKIPIF1<0,則SKIPIF1<0,由題得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故選SKIPIF1<0.考點:函數(shù)的解析式.【名師點晴】本題主要考查的是利用導數(shù)研究函數(shù)的性質,函數(shù)的解析式等知識,屬于難題.解題時要認真理解題意,“一段環(huán)湖彎曲路段與兩條直道平滑連續(xù)(相切),已知環(huán)湖彎曲路段為某三次函數(shù)圖像的一部分”,確定函數(shù)為三次函數(shù),然后由已知函數(shù)圖像,將圖像語言轉化為數(shù)學語言,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,從而確定出參數(shù)SKIPIF1<05.【2025全國2,文11】若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調遞增,則SKIPIF1<0的取值范圍是()(A)SKIPIF1<0(B)SKIPIF1<0(C)SKIPIF1<0(D)SKIPIF1<0【答案】D【解析】SKIPIF1<0,由已知得SKIPIF1<0在SKIPIF1<0恒成立,故SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的取值范圍是SKIPIF1<0.【考點定位】函數(shù)的單調性.【名師點睛】本題考查了利用函數(shù)的導數(shù)研究函數(shù)的單調性,不等式的恒成立,屬于中檔題,深入理解函數(shù)的單調性與函數(shù)導數(shù)之間的關系是解題的關鍵,注意不等式的恒成立的處理時端點值能否取到認真判斷.6.【2025高考新課標1文數(shù)】若函數(shù)SKIPIF1<0在SKIPIF1<0單調遞增,則a的取值范圍是()(A)SKIPIF1<0(B)SKIPIF1<0(C)SKIPIF1<0(D)SKIPIF1<0【答案】C【解析】試題分析:SKIPIF1<0對SKIPIF1<0恒成立,故SKIPIF1<0,即SKIPIF1<0恒成立,即SKIPIF1<0對SKIPIF1<0恒成立,構造SKIPIF1<0,開口向下的二次函數(shù)SKIPIF1<0的最小值的可能值為端點值,故只需保證SKIPIF1<0,解得SKIPIF1<0.故選C.考點:三角變換及導數(shù)的應用【名師點睛】本題把導數(shù)與三角函數(shù)結合在一起進行考查,有所創(chuàng)新,求解關鍵是把函數(shù)單調性轉化為不等式恒成立,再進一步轉化為二次函數(shù)在閉區(qū)間上的最值問題,注意與三角函數(shù)值域或最值有關的問題,要注意弦函數(shù)的有界性.7.【2025全國1,文12】已知函數(shù)SKIPIF1<0,若SKIPIF1<0存在唯一的零點SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是()SKIPIF1<0(B)SKIPIF1<0(C)SKIPIF1<0(D)SKIPIF1<0【答案】C考點:1.函數(shù)的零點;2.導數(shù)在函數(shù)性質中的運用;3.分類討論的運用【名師點睛】本題主要是考查函數(shù)的零點、導數(shù)在函數(shù)性質中的運用和分類討論思想的運用,在研究函數(shù)的性質時要結合函數(shù)的單調性、奇偶性、零點、以及極值等函數(shù)的特征去研究,本題考查了考生的數(shù)形結合能力.8.【2025高考四川文科】設直線l1,l2分別是函數(shù)f(x)=SKIPIF1<0圖象上點P1,P2處的切線,l1與l2垂直相交于點P,且l1,l2分別與y軸相交于點A,B,則△PAB的面積的取值范圍是()(A)(0,1)(B)(0,2)(C)(0,+∞)(D)(1,+∞)【答案】A【解析】考點:1.導數(shù)的幾何意義;2.兩直線垂直關系;3.直線方程的應用;4.三角形面積取值范圍.【名師點睛】本題首先考查導數(shù)的幾何意義,其次考查最值問題,解題時可設出切點坐標,利用切線垂直求出這兩點的關系,同時得出切線方程,從而得點SKIPIF1<0坐標,由兩直線相交得出SKIPIF1<0點坐標,從而求得面積,題中把面積用SKIPIF1<0表示后,可得它的取值范圍.解決本題可以是根據(jù)題意按部就班一步一步解得結論.這也是我們解決問題的一種基本方法,樸實而基礎,簡單而實用.9.【2025高考四川文科】已知SKIPIF1<0函數(shù)SKIPIF1<0的極小值點,則SKIPIF1<0=()(A)-4(B)-2(C)4(D)2【答案】D【解析】試題分析:SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,易得SKIPIF1<0在SKIPIF1<0上單調遞減,在SKIPIF1<0上單調遞增,故SKIPIF1<0極小值為SKIPIF1<0,由已知得SKIPIF1<0,故選D.考點:函數(shù)導數(shù)與極值.【名師點睛】本題考查函數(shù)的極值.在可導函數(shù)中函數(shù)的極值點SKIPIF1<0是方程SKIPIF1<0的解,但SKIPIF1<0是極大值點還是極小值點,需要通過這點兩邊的導數(shù)的正負性來判斷,在SKIPIF1<0附近,如果SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0是極小值點,如果SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0是極大值點,10.【2025高考福建,文12】“對任意SKIPIF1<0,SKIPIF1<0”是“SKIPIF1<0”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件【答案】B【解析】當SKIPIF1<0時,SKIPIF1<0,構造函數(shù)SKIPIF1<0,則SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0單調遞增,故SKIPIF1<0,則SKIPIF1<0;當SKIPIF1<0時,不等式SKIPIF1<0等價于SKIPIF1<0,構造函數(shù)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0遞增,故SKIPIF1<0,則SKIPIF1<0.綜上所述,“對任意SKIPIF1<0,SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件,選B.【考點定位】導數(shù)的應用.【名師點睛】本題以充分條件和必要條件為載體考查三角函數(shù)和導數(shù)在單調性上的應用,根據(jù)已知條件構造函數(shù),進而研究其圖象與性質,是函數(shù)思想的體現(xiàn),屬于難題.11.(2025課標全國Ⅰ,文12)已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是().A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)答案:C解析:當a=0時,f(x)=-3x2+1存在兩個零點,不合題意;當a>0時,f′(x)=3ax2-6x=SKIPIF1<0,令f′(x)=0,得x1=0,SKIPIF1<0,所以f(x)在x=0處取得極大值f(0)=1,在SKIPIF1<0處取得極小值SKIPIF1<0,要使f(x)有唯一的零點,需SKIPIF1<0,但這時零點x0一定小于0,不合題意;當a<0時,f′(x)=3ax2-6x=SKIPIF1<0,令f′(x)=0,得x1=0,SKIPIF1<0,這時f(x)在x=0處取得極大值f(0)=1,在SKIPIF1<0處取得極小值SKIPIF1<0,要使f(x)有唯一零點,應滿足SKIPIF1<0,解得a<-2(a>2舍去),且這時零點x0一定大于0,滿足題意,故a的取值范圍是(-∞,-2).名師點睛:本題考查導數(shù)法求函數(shù)的單調性與極值,函數(shù)的零點,考查分析轉化能力,分類討論思想,較難題.注意區(qū)別函數(shù)的零點與極值點.12.【2025遼寧文12】當SKIPIF1<0時,不等式SKIPIF1<0恒成立,則實數(shù)a的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】【考點定位】利用導數(shù)求函數(shù)的極值和最值.【名師點睛】本題考查應用導數(shù)研究函數(shù)的單調性、極值,不等式恒成立問題.解答本題的關鍵,是利用分類討論思想、轉化與化歸思想,通過構造函數(shù)研究其單調性、最值,得出結論.本題屬于能力題,中等難度.在考查應用導數(shù)研究函數(shù)的單調性、極值、不等式恒成立問題等基本方法的同時,考查了考生的邏輯推理能力、運算能力、分類討論思想及轉化與化歸思想.二、填空題1.【2025高考廣東卷.文.11】曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為________.【答案】SKIPIF1<0或SKIPIF1<0.【解析】SKIPIF1<0,SKIPIF1<0,故所求的切線的斜率為SKIPIF1<0,故所求的切線的方程為SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.【考點定位】本題考查利用導數(shù)求函數(shù)圖象的切線問題,屬于中等題.【名師點晴】本題主要考查的是導數(shù)的幾何意義和直線的方程,屬于容易題.解題時一定要抓住重要字眼“在點SKIPIF1<0處”,否則很容易出現(xiàn)錯誤.解導數(shù)的幾何意義問題時一定要抓住切點的三重作用:=1\*GB3①切點在曲線上;=2\*GB3②切點在切線上;=3\*GB3③切點處的導數(shù)值等于切線的斜率.2.[2025高考新課標Ⅲ文數(shù)]已知SKIPIF1<0為偶函數(shù),當SKIPIF1<0時,SKIPIF1<0,則曲線SKIPIF1<0在SKIPIF1<0處的切線方程式_____________________________.【答案】SKIPIF1<0【解析】試題分析:當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0.又因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,則切線斜率為SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0.考點:1、函數(shù)的奇偶性;2、解析式;3、導數(shù)的幾何意義.【知識拓展】本題題型可歸納為“已知當SKIPIF1<0時,函數(shù)SKIPIF1<0,則當SKIPIF1<0時,求函數(shù)的解析式”.有如下結論:若函數(shù)SKIPIF1<0為偶函數(shù),則當SKIPIF1<0時,函數(shù)的解析式為SKIPIF1<0;若SKIPIF1<0為奇函數(shù),則函數(shù)的解析式為SKIPIF1<0.3.【2025高考陜西,文15】函數(shù)SKIPIF1<0在其極值點處的切線方程為____________.【答案】SKIPIF1<0【解析】SKIPIF1<0,令SKIPIF1<0,此時SKIPIF1<0函數(shù)SKIPIF1<0在其極值點處的切線方程為SKIPIF1<0【考點定位】:導數(shù)的幾何意義.【名師點睛】1.本題考查導數(shù)的幾何意義,利用導數(shù)研究曲線上某點處切線方程等基礎知識,考查運算求解能力.2.解決導數(shù)幾何意義的問題時要注意抓住切點的三重作用:eq\o\ac(○,1)切點在曲線上;eq\o\ac(○,2)切點在切線上;eq\o\ac(○,3)切點處導函數(shù)值等于切線斜率.4.【2025高考新課標1,文14】已知函數(shù)SKIPIF1<0的圖像在點SKIPIF1<0的處的切線過點SKIPIF1<0,則SKIPIF1<0.【答案】1【解析】試題分析:∵SKIPIF1<0,∴SKIPIF1<0,即切線斜率SKIPIF1<0,又∵SKIPIF1<0,∴切點為(1,SKIPIF1<0),∵切線過(2,7),∴SKIPIF1<0,解得SKIPIF1<01.考點:利用導數(shù)的幾何意義求函數(shù)的切線;常見函數(shù)的導數(shù);【名師點睛】對求過某點的切線問題,常設出切點,利用導數(shù)求出切線方程,將已知點代入切線方程得到關于切點橫坐標的方程,解出切點的橫坐標,即可求出切線方程,思路明確,關鍵是運算要細心.5.【2025,安徽文15】若直線SKIPIF1<0與曲線SKIPIF1<0滿足下列兩個條件:SKIPIF1<0直線SKIPIF1<0在點SKIPIF1<0處與曲線SKIPIF1<0相切;SKIPIF1<0曲線SKIPIF1<0在SKIPIF1<0附近位于直線SKIPIF1<0的兩側,則稱直線SKIPIF1<0在點SKIPIF1<0處“切過”曲線SKIPIF1<0,下列命題正確的是_________(寫出所有正確命題的編號)①直線SKIPIF1<0在點SKIPIF1<0處“切過”曲線SKIPIF1<0:SKIPIF1<0②直線SKIPIF1<0在點SKIPIF1<0處“切過”曲線SKIPIF1<0:SKIPIF1<0③直線SKIPIF1<0在點SKIPIF1<0處“切過”曲線SKIPIF1<0:SKIPIF1<0④直線SKIPIF1<0在點SKIPIF1<0處“切過”曲線SKIPIF1<0:SKIPIF1<0⑤直線SKIPIF1<0在點SKIPIF1<0處“切過”曲線SKIPIF1<0:SKIPIF1<0【答案】①③④,【解析】試題分析:由題意,①SKIPIF1<0上在SKIPIF1<0處的切線方程為SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0附近位于切線的兩側,滿足條件;②SKIPIF1<0上在SKIPIF1<0處的切線方程為SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0附近位于切線的同側,不滿足條件;③SKIPIF1<0上在SKIPIF1<0處的切線方程為SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0附近位于切線的兩側,滿足條件;④SKIPIF1<0上在SKIPIF1<0處的切線方程為SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0附近位于切線的兩側,滿足條件;⑤SKIPIF1<0上在SKIPIF1<0處的切線方程為SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0附近位于切線的同側,不滿足條件,故選①③④,如下圖:考點:1,函數(shù)的切線方程;2,對定義的理解,【名師點睛】對于函數(shù)新定義的創(chuàng)新題,要緊扣題目中所給的信息和對已知條件的解讀理解,將其轉化為已有的認知結構,然后利用函數(shù)性質解題.已知SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0.6.【2025高考天津,文11】已知函數(shù)SKIPIF1<0,其中a為實數(shù),SKIPIF1<0為SKIPIF1<0的導函數(shù),若SKIPIF1<0,則a的值為.【答案】3【解析】因為SKIPIF1<0,所以SKIPIF1<0.【考點定位】本題主要考查導數(shù)的運算法則.【名師點睛】本題考查內容單一,求出SKIPIF1<0由,再由SKIPIF1<0可直接求得a的值,因此可以說本題是一道基礎題,但要注意運算的準確性,由于填空題沒有中間分,一步出錯,就得零分,故運算要特別細心.7.【2025新課標2文16】已知曲線SKIPIF1<0在點SKIPIF1<0處的切線與曲線SKIPIF1<0相切,則a=.【答案】8【考點定位】本題主要考查導數(shù)的幾何意義及直線與拋物線相切問題.【名師點睛】求曲線在某點處的切線方程的方法是:求出函數(shù)在該點處的導數(shù)值即為切線斜率,然后用點斜式就可寫出切線方程.而直線與拋物線相切則可以通過判別式來解決,本題將導數(shù)的幾何意義與二次函數(shù)交匯在一起進行考查,具有小題綜合化的特點.三、解答題1.【2025高考北京文第20題】(本小題滿分13分)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值;(2)若過點SKIPIF1<0存在3條直線與曲線SKIPIF1<0相切,求t的取值范圍;(3)問過點SKIPIF1<0分別存在幾條直線與曲線SKIPIF1<0相切?(只需寫出結論)【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)詳見解析.【解析】試題分析:(1)求導數(shù),導數(shù)等于0求出SKIPIF1<0,再代入原函數(shù)解析式,最后比較大小,即可;(2)設切點,由相切得出切線方程,然后列表并討論求出結果;(3)由(2)容易得出結果..試題解析:(1)由SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為SKIPIF1<0.(2)設過點P(1,t)的直線與曲線SKIPIF1<0相切于點SKIPIF1<0,則SKIPIF1<0,且切線斜率為SKIPIF1<0,所以切線方程為SKIPIF1<0,因此SKIPIF1<0,整理得:SKIPIF1<0,設SKIPIF1<0SKIPIF1<0,則“過點SKIPIF1<0存在3條直線與曲線SKIPIF1<0相切”等價于“SKIPIF1<0有3個不同零點”,SKIPIF1<0SKIPIF1<0=SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的情況如下:SKIPIF1<0SKIPIF1<00SKIPIF1<01SKIPIF1<0SKIPIF1<0+0SKIPIF1<00+SKIPIF1<0t+3SKIPIF1<0所以,SKIPIF1<0是SKIPIF1<0的極大值,SKIPIF1<0是SKIPIF1<0的極小值,當SKIPIF1<0,即SKIPIF1<0時,此時SKIPIF1<0在區(qū)間SKIPIF1<0和SKIPIF1<0上分別至多有1個零點,所以SKIPIF1<0至多有2個零點,當SKIPIF1<0,SKIPIF1<0時,此時SKIPIF1<0在區(qū)間SKIPIF1<0和SKIPIF1<0上分別至多有1個零點,所以SKIPIF1<0至多有2個零點.當SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0時,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0分別為區(qū)間SKIPIF1<0和SKIPIF1<0上恰有1個零點,由于SKIPIF1<0在區(qū)間SKIPIF1<0和SKIPIF1<0上單調,所以SKIPIF1<0分別在區(qū)間SKIPIF1<0和SKIPIF1<0上恰有1個零點.綜上可知,當過點SKIPIF1<0存在3條直線與曲線SKIPIF1<0相切時,t的取值范圍是SKIPIF1<0.(3)過點A(-1,2)存在3條直線與曲線SKIPIF1<0相切;過點B(2,10)存在2條直線與曲線SKIPIF1<0相切;過點C(0,2)存在1條直線與曲線SKIPIF1<0相切.考點:本小題主要考查導數(shù)的幾何意義、導數(shù)在函數(shù)中的應用等基礎知識的同時,考查分類討論、函數(shù)與方程、轉化與化歸等數(shù)學思想,考查同學們分析問題與解決問題的能力.利用導數(shù)研究函數(shù)問題是高考的熱點,在每年的高考試卷中占分比重較大,熟練這部分的基礎知識、基本題型與基本技能是解決這類問題的關鍵.2.【2025高考北京,文19】(本小題滿分13分)設函數(shù)SKIPIF1<0,SKIPIF1<0.(I)求SKIPIF1<0的單調區(qū)間和極值;(II)證明:若SKIPIF1<0存在零點,則SKIPIF1<0在區(qū)間SKIPIF1<0上僅有一個零點.【答案】(I)單調遞減區(qū)間是SKIPIF1<0,單調遞增區(qū)間是SKIPIF1<0;極小值SKIPIF1<0;(II)證明詳見解析.試題解析:(Ⅰ)由SKIPIF1<0,(SKIPIF1<0)得SKIPIF1<0.由SKIPIF1<0解得SKIPIF1<0.SKIPIF1<0與SKIPIF1<0在區(qū)間SKIPIF1<0上的情況如下:所以,SKIPIF1<0的單調遞減區(qū)間是SKIPIF1<0,單調遞增區(qū)間是SKIPIF1<0;SKIPIF1<0在SKIPIF1<0處取得極小值SKIPIF1<0.(Ⅱ)由(Ⅰ)知,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0.因為SKIPIF1<0存在零點,所以SKIPIF1<0,從而SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,且SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0在區(qū)間SKIPIF1<0上的唯一零點.當SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上僅有一個零點.綜上可知,若SKIPIF1<0存在零點,則SKIPIF1<0在區(qū)間SKIPIF1<0上僅有一個零點.考點:導數(shù)的運算、利用導數(shù)判斷函數(shù)的單調性、利用導數(shù)求函數(shù)的極值、函數(shù)零點問題.【名師點晴】本題主要考查的是導數(shù)的運算、利用導數(shù)判斷函數(shù)的單調性、利用導數(shù)求函數(shù)的極值和函數(shù)的零點,屬于難題.利用導數(shù)求函數(shù)SKIPIF1<0的單調性與極值的步驟:=1\*GB3①確定函數(shù)SKIPIF1<0的定義域;=2\*GB3②對SKIPIF1<0求導;=3\*GB3③求方程SKIPIF1<0的所有實數(shù)根;=4\*GB3④列表格.證明函數(shù)僅有一個零點的步驟:=1\*GB3①用零點存在性定理證明函數(shù)零點的存在性;=2\*GB3②用函數(shù)的單調性證明函數(shù)零點的唯一性.3.【2025高考廣東卷.文.21】(本小題滿分14分)已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調區(qū)間;(2)當SKIPIF1<0時,試討論是否存在SKIPIF1<0,使得SKIPIF1<0.【答案】(1)詳見解析;(2)詳見解析.【解析】(1)SKIPIF1<0,方程SKIPIF1<0的判別式為SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0上是增函數(shù);②當SKIPIF1<0時,方程SKIPIF1<0的兩根分別為SKIPIF1<0,SKIPIF1<0,解不等式SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,解不等式SKIPIF1<0,解得SKIPIF1<0,此時,函數(shù)SKIPIF1<0的單調遞增區(qū)間為SKIPIF1<0和SKIPIF1<0,單調遞減區(qū)間為SKIPIF1<0;綜上所述,當SKIPIF1<0時,函數(shù)SKIPIF1<0的單調遞增區(qū)間為SKIPIF1<0,當SKIPIF1<0時,函數(shù)SKIPIF1<0的單調遞增區(qū)間為SKIPIF1<0和SKIPIF1<0,單調遞減區(qū)間為SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,必須SKIPIF1<0在SKIPIF1<0上有解,SKIPIF1<0,SKIPIF1<0,方程的兩根為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,依題意,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,又由SKIPIF1<0得SKIPIF1<0,故欲使?jié)M足題意的SKIPIF1<0存在,則SKIPIF1<0,所以,當SKIPIF1<0時,存在唯一SKIPIF1<0滿足SKIPIF1<0,當SKIPIF1<0時,不存在SKIPIF1<0滿足SKIPIF1<0.【考點定位】本題以三次函數(shù)為考查形式,考查利用導數(shù)求函數(shù)的單調區(qū)間,從中滲透了利用分類討論的思想處理含參函數(shù)的單調區(qū)間問題,并考查了利用作差法求解不等式的問題,綜合性強,屬于難題.【名師點晴】本題主要考查的是函數(shù)的單調區(qū)間和函數(shù)與方程,屬于難題.解題時一定要抓住重要字眼“單調區(qū)間”,否則很容易出現(xiàn)錯誤.利用導數(shù)求函數(shù)SKIPIF1<0的單調區(qū)間的步驟:=1\*GB3①確定函數(shù)SKIPIF1<0的定義域;=2\*GB3②對SKIPIF1<0求導;=3\*GB3③令SKIPIF1<0,解不等式得SKIPIF1<0的范圍就是遞增區(qū)間,令SKIPIF1<0,解不等式得SKIPIF1<0的范圍就是遞減區(qū)間.4.【2025高考新課標1文數(shù)】(本小題滿分12分)已知函數(shù)SKIPIF1<0.(I)討論SKIPIF1<0的單調性;(II)若SKIPIF1<0有兩個零點,求SKIPIF1<0的取值范圍.【答案】見解析(II)SKIPIF1<0【解析】試題分析:(I)先求得SKIPIF1<0再根據(jù)1,0,2a的大小進行分類確定SKIPIF1<0的單調性;(II)借助第一問的結論,通過分類討論函數(shù)單調性,確定零點個數(shù),從而可得a的取值范圍為SKIPIF1<0.③若SKIPIF1<0,則SKIPIF1<0,故當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調遞增,在SKIPIF1<0單調遞減.(II)(i)設SKIPIF1<0,則由(I)知,SKIPIF1<0在SKIPIF1<0單調遞減,在SKIPIF1<0單調遞增.又SKIPIF1<0,取b滿足b<0且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0有兩個零點.(ii)設a=0,則SKIPIF1<0所以SKIPIF1<0有一個零點.(iii)設a<0,若SKIPIF1<0,則由(I)知,SKIPIF1<0在SKIPIF1<0單調遞增.又當SKIPIF1<0時,SKIPIF1<0<0,故SKIPIF1<0不存在兩個零點;若SKIPIF1<0,則由(I)知,SKIPIF1<0在SKIPIF1<0單調遞減,在SKIPIF1<0單調遞增.又當SKIPIF1<0時SKIPIF1<0<0,故SKIPIF1<0不存在兩個零點.綜上,a的取值范圍為SKIPIF1<0.考點:函數(shù)單調性,導數(shù)應用【名師點睛】本題第一問是用導數(shù)研究函數(shù)單調性,對含有參數(shù)的函數(shù)單調性的確定,通常要根據(jù)參數(shù)進行分類討論,要注意分類討論的原則:互斥、無漏、最簡;第二問是求參數(shù)取值范圍,由于這類問題常涉及到導數(shù)、函數(shù)、不等式等知識,越來越受到高考命題者的青睞,解決此類問題的思路是構造適當?shù)暮瘮?shù),利用導數(shù)研究函數(shù)的單調性或極值破解.5.【2025高考廣東,文21】(本小題滿分14分)設SKIPIF1<0為實數(shù),函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的取值范圍;(2)討論SKIPIF1<0的單調性;(3)當SKIPIF1<0時,討論SKIPIF1<0在區(qū)間SKIPIF1<0內的零點個數(shù).【答案】(1)SKIPIF1<0;(2)SKIPIF1<0在SKIPIF1<0上單調遞增,在SKIPIF1<0上單調遞減;(3)當SKIPIF1<0時,SKIPIF1<0有一個零點SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0有兩個零點.(2)SKIPIF1<0對于SKIPIF1<0,其對稱軸為SKIPIF1<0,開口向上,所以SKIPIF1<0在SKIPIF1<0上單調遞增;對于SKIPIF1<0,其對稱軸為SKIPIF1<0,開口向上,所以SKIPIF1<0在SKIPIF1<0上單調遞減.綜上所述,SKIPIF1<0在SKIPIF1<0上單調遞增,在SKIPIF1<0上單調遞減.(3)由(2)得SKIPIF1<0在SKIPIF1<0上單調遞增,在SKIPIF1<0上單調遞減,所以SKIPIF1<0.(i)當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0).因為SKIPIF1<0在SKIPIF1<0上單調遞減,所以SKIPIF1<0而SKIPIF1<0在SKIPIF1<0上單調遞增,SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0在SKIPIF1<0無交點.當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即當SKIPIF1<0時,SKIPIF1<0有一個零點SKIPIF1<0.(ii)當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上單調遞增,當SKIPIF1<0時,SKIPIF1<0.下面比較SKIPIF1<0與SKIPIF1<0的大小因為SKIPIF1<0所以SKIPIF1<0結合圖象不難得當SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0有兩個交點.綜上所述,當SKIPIF1<0時,SKIPIF1<0有一個零點SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0有兩個零點.考點:1、絕對值不等式;2、函數(shù)的單調性;3、函數(shù)的最值;4、函數(shù)的零點.【名師點晴】本題主要考查的是絕對值不等式、函數(shù)的單調性、函數(shù)的最值和函數(shù)的零點,屬于難題.零點分段法解絕對值不等式的步驟:=1\*GB3①求零點;=2\*GB3②劃區(qū)間,去絕對值號;=3\*GB3③分別解去掉絕對值的不等式;=4\*GB3④取每段結果的并集,注意在分段時不要遺漏區(qū)間的端點值.判斷函數(shù)的單調性的方法:=1\*GB3①基本初等函數(shù)的單調性;=2\*GB3②導數(shù)法.判斷函數(shù)零點的個數(shù)的方法:=1\*GB3①解方程法;=2\*GB3②圖象法.6.【2025湖南文21】已知函數(shù)SKIPIF1<0.求SKIPIF1<0的單調區(qū)間;(2)記SKIPIF1<0為SKIPIF1<0的從小到大的第SKIPIF1<0個零點,證明:對一切SKIPIF1<0,有SKIPIF1<0.【答案】(1)單調遞減區(qū)間為SKIPIF1<0,單調遞增區(qū)間為SKIPIF1<0.(2)詳見解析【解析】試題分析:(1)對函數(shù)SKIPIF1<0求導得到導函數(shù)SKIPIF1<0,求SKIPIF1<0大于0和小于0的解集得到單調減區(qū)間和單調增區(qū)間,但是必須注意正余弦的周期性和原函數(shù)的定義域SKIPIF1<0.試題解析:數(shù)SKIPIF1<0求導可得SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0.此時SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0,故函數(shù)SKIPIF1<0的單調遞減區(qū)間為SKIPIF1<0,單調遞增區(qū)間為SKIPIF1<0.(2)由(1)可知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,又SKIPIF1<0,所以SKIPIF1<0,當SKIPIF1<0時,因為SKIPIF1<0,且函數(shù)SKIPIF1<0的圖像是連續(xù)不斷的,所以SKIPIF1<0在區(qū)間SKIPIF1<0內至少存在一個零點,又SKIPIF1<0在區(qū)間SKIPIF1<0上是單調的,故SKIPIF1<0,因此,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,綜上所述,對一切的SKIPIF1<0,SKIPIF1<0.【考點定位】導數(shù)單調性放縮法裂項求和【名師點睛】本題主要考查了利用導數(shù)研究函數(shù)的性質,解決問題的關鍵是求導要精確;利用導數(shù)研究函數(shù)單調性的一般步驟:(1)確定函數(shù)的定義域;(2)求導數(shù)f′(x);(3)①若求單調區(qū)間(或證明單調性),只需在函數(shù)f(x)的定義域內解(或證明)不等式f′(x)>0或f′(x)<0.②若已知f(x)的單調性,則轉化為不等式f′(x)≥0或f′(x)≤0在單調區(qū)間上恒成立問題求解.利用導數(shù)證明不等式,就是把不等式恒成立的問題,通過構造函數(shù),轉化為利用導數(shù)求函數(shù)最值的問題.應用這種方法的難點是如何根據(jù)不等式的結構特點或者根據(jù)題目證明目標的要求,構造出相應的函數(shù)關系式.失誤與防范1.研究函數(shù)的有關性質,首先要求出函數(shù)的定義域.2.利用單調性求最值時不要忽視f′(x)=0的情況.3.“f′(x0)=0”是“函數(shù)f(x)在x0取到極值”的必要條件.7.【2025高考新課標2文數(shù)】已知函數(shù)SKIPIF1<0.(=1\*ROMANI)當SKIPIF1<0時,求曲線SKIPIF1<0在SKIPIF1<0處的切線方程;(Ⅱ)若當SKIPIF1<0時,SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)SKIPIF1<0(II)當SKIPIF1<0時,SKIPIF1<0等價于SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,(i)當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調遞增,因此SKIPIF1<0;(ii)當SKIPIF1<0時,令SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0和SKIPIF1<0得SKIPIF1<0,故當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調遞減,因此SKIPIF1<0.綜上,SKIPIF1<0的取值范圍是SKIPIF1<0考點:導數(shù)的幾何意義,函數(shù)的單調性.【名師點睛】求函數(shù)的單調區(qū)間的方法:(1)確定函數(shù)y=f(x)的定義域;(2)求導數(shù)y′=f′(x);(3)解不等式f′(x)>0,解集在定義域內的部分為單調遞增區(qū)間;(4)解不等式f′(x)<0,解集在定義域內的部分為單調遞減區(qū)間.8.【2025山東.文20】(本題滿分13分)設函數(shù)SKIPIF1<0若SKIPIF1<0,求曲線SKIPIF1<0處的切線方程;討論函數(shù)SKIPIF1<0的單調性.【答案】(1)SKIPIF1<0.(2)當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增;當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞減;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調遞減,在SKIPIF1<0上單調遞增.【解析】試題分析:(1)由題意知SKIPIF1<0時,SKIPIF1<0,求切線的斜率,即SKIPIF1<0,又SKIPIF1<0,由直線方程的點斜式進一步整理,得到切線方程為SKIPIF1<0.(2)函數(shù)SKIPIF1<0的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論