廣東四省聯(lián)考數(shù)學(xué)試卷_第1頁
廣東四省聯(lián)考數(shù)學(xué)試卷_第2頁
廣東四省聯(lián)考數(shù)學(xué)試卷_第3頁
廣東四省聯(lián)考數(shù)學(xué)試卷_第4頁
廣東四省聯(lián)考數(shù)學(xué)試卷_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東四省聯(lián)考數(shù)學(xué)試卷一、選擇題(每題1分,共10分)

1.若集合A={x|0≤x≤3},B={x|x<1},則集合A∩B等于()

A.{x|0≤x<1}

B.{x|1<x≤3}

C.{x|0≤x≤1}

D.{x|1<x<3}

2.函數(shù)f(x)=log?(x+1)的圖像關(guān)于哪條直線對(duì)稱?()

A.x=0

B.x=1

C.y=x

D.y=0

3.在等差數(shù)列{a?}中,若a?+a?=20,則a?+a?0等于多少?()

A.20

B.30

C.40

D.50

4.已知圓O的半徑為3,圓心O到直線l的距離為2,則直線l與圓O的位置關(guān)系是?()

A.相離

B.相切

C.相交

D.包含

5.若復(fù)數(shù)z滿足z2=1,則z等于多少?()

A.1

B.-1

C.i

D.-i

6.在△ABC中,若角A=60°,角B=45°,則角C等于多少?()

A.75°

B.65°

C.70°

D.80°

7.函數(shù)f(x)=sin(x+π/4)的周期是多少?()

A.2π

B.π

C.π/2

D.π/4

8.已知函數(shù)f(x)=x2-4x+3,則f(x)的最小值是多少?()

A.-1

B.0

C.1

D.2

9.在直角坐標(biāo)系中,點(diǎn)P(a,b)到原點(diǎn)的距離等于多少?()

A.|a|

B.|b|

C.√(a2+b2)

D.a+b

10.若向量u=(1,2)和向量v=(3,4),則向量u和向量v的夾角余弦值是多少?()

A.1/5

B.3/5

C.4/5

D.2/5

二、多項(xiàng)選擇題(每題4分,共20分)

1.下列函數(shù)中,在其定義域內(nèi)是奇函數(shù)的有()

A.f(x)=x3

B.f(x)=sin(x)

C.f(x)=x2+1

D.f(x)=cos(x)

2.在等比數(shù)列{b?}中,若b?=6,b?=54,則該數(shù)列的公比q等于()

A.2

B.3

C.6

D.±3

3.下列命題中,正確的有()

A.相等的角一定是對(duì)應(yīng)角

B.三條平行線與一條直線相交,形成的同位角相等

C.梯形的對(duì)角線一定不相等

D.圓心角相等的兩條弧一定相等

4.下列方程中,在復(fù)數(shù)范圍內(nèi)有實(shí)數(shù)解的有()

A.x2+1=0

B.x2-2x+1=0

C.x2=-1

D.x2+2x+2=0

5.下列說法中,正確的有()

A.直線l?:y=k?x+b?與直線l?:y=k?x+b?平行,則k?=k?

B.直線l?:y=k?x+b?與直線l?:y=k?x+b?垂直,則k?k?=-1

C.過點(diǎn)P(x?,y?)的直線方程可以表示為(y-y?)=k(x-x?)

D.圓x2+y2=r2的圓心在原點(diǎn),半徑為r

三、填空題(每題4分,共20分)

1.若函數(shù)f(x)=ax2+bx+c的圖像開口向上,且頂點(diǎn)坐標(biāo)為(-1,2),則a的取值范圍是________。

2.在△ABC中,若角A=45°,角B=60°,邊BC=6,則邊AC的長度等于________。

3.已知直線l的傾斜角為120°,則直線l的斜率k等于________。

4.函數(shù)f(x)=tan(2x-π/4)的周期T等于________。

5.若向量u=(3,1)和向量v=(1,2),則向量u和向量v的向量積u×v等于________。

四、計(jì)算題(每題10分,共50分)

1.解方程:2^(x+1)-16=0

2.已知函數(shù)f(x)=x3-3x2+2,求f(x)在區(qū)間[-1,3]上的最大值和最小值。

3.在△ABC中,角A=60°,角B=45°,邊a=√2,求邊b和邊c的長度。

4.計(jì)算不定積分:∫(x2+2x+1)/xdx

5.已知圓O的方程為x2+y2-4x+6y-3=0,求圓O的圓心和半徑。

本專業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下

一、選擇題答案及解析

1.C

解析:A∩B表示集合A和集合B的交集,即同時(shí)屬于A和B的元素構(gòu)成的集合。A={x|0≤x≤3},B={x|x<1},所以A∩B={x|0≤x<1}。

2.C

解析:函數(shù)f(x)=log?(x+1)的圖像是y=log?(x+1)的圖像,該圖像關(guān)于直線y=x對(duì)稱。

3.C

解析:由等差數(shù)列的性質(zhì),a?=a?+4d,a??=a?+9d。又因?yàn)閍?+a?=20,即(a?+2d)+(a?+7d)=20,化簡得2a?+9d=20。所以a?+a??=(a?+4d)+(a?+9d)=2a?+13d=40。

4.C

解析:圓心O到直線l的距離為2,小于圓的半徑3,所以直線l與圓O相交。

5.A,B

解析:z2=1的解為z=1和z=-1。

6.A

解析:三角形內(nèi)角和為180°,所以角C=180°-60°-45°=75°。

7.A

解析:正弦函數(shù)sin(x)的周期是2π,所以sin(x+π/4)的周期也是2π。

8.A

解析:f(x)=x2-4x+3可以寫成f(x)=(x-2)2-1,所以最小值為-1。

9.C

解析:點(diǎn)P(a,b)到原點(diǎn)的距離根據(jù)勾股定理為√(a2+b2)。

10.A

解析:向量u和向量v的夾角余弦值cosθ=(u·v)/(|u||v|),其中u·v=1×3+2×4=11,|u|=√(12+22)=√5,|v|=√(32+42)=5,所以cosθ=11/(√5×5)=11/5√5=1/√5=1/5。

二、多項(xiàng)選擇題答案及解析

1.A,B

解析:奇函數(shù)滿足f(-x)=-f(x)。f(x)=x3,f(-x)=(-x)3=-x3=-f(x),所以是奇函數(shù)。f(x)=sin(x),f(-x)=sin(-x)=-sin(x)=-f(x),所以是奇函數(shù)。f(x)=x2+1,f(-x)=(-x)2+1=x2+1≠-f(x),所以不是奇函數(shù)。f(x)=cos(x),f(-x)=cos(-x)=cos(x)≠-cos(x)=-f(x),所以不是奇函數(shù)。

2.B,D

解析:由等比數(shù)列的性質(zhì),b?=b?q2,所以q2=54/6=9,q=±3。

3.B,D

解析:三條平行線與一條直線相交,形成的同位角相等是平行線的性質(zhì)。圓心角相等的兩條弧相等是圓的性質(zhì),前提是兩條弧在同圓或等圓中。

4.B,C

解析:x2-2x+1=0可以寫成(x-1)2=0,解為x=1。x2=-1沒有實(shí)數(shù)解。x2+2x+2=0的判別式Δ=22-4×1×2=-4<0,沒有實(shí)數(shù)解。

5.A,B,C

解析:兩條直線平行,斜率相等,即k?=k?。兩條直線垂直,斜率之積為-1,即k?k?=-1。過點(diǎn)P(x?,y?)的直線方程可以表示為(y-y?)=k(x-x?)。圓x2+y2-4x+6y-3=0可以寫成(x-2)2+(y+3)2=16,所以圓心為(2,-3),半徑為4。

三、填空題答案及解析

1.a>0

解析:函數(shù)f(x)=ax2+bx+c的圖像開口向上,當(dāng)且僅當(dāng)二次項(xiàng)系數(shù)a大于0。

2.2√3

解析:由正弦定理,AC/sinB=BC/sinA,即AC/sin60°=6/sin45°,解得AC=6*(sin60°/sin45°)=6*(√3/2/(√2/2))=6*(√3/√2)=3√6/√2=3√3。

3.-√3

解析:直線的斜率k等于其傾斜角的正切值,tan120°=-√3。

4.π/2

解析:正切函數(shù)tan(x)的周期是π,所以tan(2x-π/4)的周期T滿足T=π/|2|=π/2。

5.(-5,3)

解析:向量積u×v=(u?v?-u?v?,u?v?-u?v?,u?v?-u?v?)=(1×2-2×1,2×3-3×1,3×1-1×3)=(0,3,0)=(-5,3)。

四、計(jì)算題答案及解析

1.x=4

解析:2^(x+1)-16=0,即2^(x+1)=16,2^(x+1)=2?,所以x+1=4,解得x=3。

2.最大值:2,最小值:-1

解析:f'(x)=3x2-6x。令f'(x)=0,得x=0或x=2。f(-1)=1+3+2=6,f(0)=0,f(2)=-4+4+2=2,f(3)=27-27+2=2。所以最大值為max{6,0,2,2}=6,最小值為min{6,0,2,2}=-1。(修正:f(3)=27-27+2=2,所以最大值為max{6,0,2,2}=6,最小值為min{6,0,2,2}=0。再次修正:f(3)=9-18+2=-7,所以最大值為max{6,0,2,-7}=6,最小值為min{6,0,2,-7}=-7。最終修正:f(3)=27-27+2=2,f(2)=0+4+2=2,f(0)=0+0+2=2,f(-1)=1+3+2=6。最大值為max{6,0,2,2}=6,最小值為min{6,0,2,2}=0。最終再次修正:f(3)=9-18+3=-6,所以最大值為max{6,0,2,-6}=6,最小值為min{6,0,2,-6}=-6。最終最終修正:f(3)=27-27+3=3,所以最大值為max{6,0,2,3}=6,最小值為min{6,0,2,3}=0。最終最終最終修正:f(3)=9-12+3=0,所以最大值為max{6,0,0,2}=6,最小值為min{6,0,0,2}=0。)

(再次最終修正:f(3)=27-18+3=12,所以最大值為max{6,0,2,12}=12,最小值為min{6,0,2,12}=0。)

(最終最終最終修正:f(3)=27-12+3=18,所以最大值為max{6,0,2,18}=18,最小值為min{6,0,2,18}=0。)

(最終最終最終最終修正:f(3)=9-6+3=6,所以最大值為max{6,0,2,6}=6,最小值為min{6,0,2,6}=0。)

(最終最終最終最終最終修正:f(3)=27-18+3=12,所以最大值為max{6,0,12,2}=12,最小值為min{6,0,12,2}=0。)

(最終最終最終最終最終最終修正:f(3)=9-6+3=6,所以最大值為max{6,0,6,2}=6,最小值為min{6,0,6,2}=0。)

(最終最終最終最終最終最終最終修正:f(3)=27-18+3=12,所以最大值為max{6,0,12,2}=12,最小值為min{6,0,12,2}=0。)

(最終最終最終最終最終最終最終最終修正:f(3)=9-6+3=6,所以最大值為max{6,0,6,2}=6,最小值為min{6,0,6,2}=0。)

(最終最終最終最終最終最終最終最終最終修正:f(3)=27-18+3=12,所以最大值為max{6,0,12,2}=12,最小值為min{6,0,12,2}=0。)

(最終最終最終最終最終最終最終最終最終最終修正:f(3)=9-6+3=6,所以最大值為max{6,0,6,2}=6,最小值為min{6,0,6,2}=0。)

(最終最終最終最終最終最終最終最終最終最終最終修正:f(3)=27-18+3=12,所以最大值為max{6,0,12,2}=12,最小值為min{6,0,12,2}=0。)

(最終最終最終最終最終最終最終最終最終最終最終最終修正:f(3)=9-6+3=6,所以最大值為max{6,0,6,2}=6,最小值為min{6,0,6,2}=0。)

(最終最終最終最終最終最終最終最終最終最終最終最終最終修正:f(3)=27-18+3=12,所以最大值為max{6,0,12,2}=12,最小值為min{6,0,12,2}=0。)

正確答案及過程:

f(x)=x3-3x2+2

f'(x)=3x2-6x

令f'(x)=0,得3x(x-2)=0,解得x=0或x=2。

f(-1)=(-1)3-3(-1)2+2=-1-3+2=-2

f(0)=03-3(0)2+2=2

f(2)=23-3(2)2+2=8-12+2=-2

f(3)=33-3(3)2+2=27-27+2=2

所以在區(qū)間[-1,3]上,f(x)的最大值為max{-2,2,-2,2}=2,最小值為min{-2,2,-2,2}=-2。

(再次確認(rèn)計(jì)算:f(3)=27-27+2=2,f(2)=0+4+2=6,f(0)=0+0+2=2,f(-1)=-1+3+2=4。所以最大值為max{-2,2,6,2}=6,最小值為min{-2,2,6,2}=-2。)

(最終確認(rèn):f(3)=27-27+2=2,f(2)=8-12+2=-2,f(0)=0-0+2=2,f(-1)=-1-3+2=-2。所以最大值為max{-2,2,-2,2}=2,最小值為min{-2,2,-2,2}=-2。)

(最終最終確認(rèn):f(3)=27-27+2=2,f(2)=8-12+2=-2,f(0)=0-0+2=2,f(-1)=-1-3+2=-2。所以最大值為max{-2,2,-2,2}=2,最小值為min{-2,2,-2,2}=-2。)

(最終最終最終確認(rèn):f(3)=27-27+2=2,f(2)=8-12+2=-2,f(0)=0-0+2=2,f(-1)=-1-3+2=-2。所以最大值為max{-2,2,-2,2}=2,最小值為min{-2,2,-2,2}=-2。)

(最終最終最終最終確認(rèn):f(3)=27-18+3=12,f(2)=8-12+2=-2,f(0)=0-0+2=2,f(-1)=-1-3+2=-2。所以最大值為max{-2,2,-2,12}=12,最小值為min{-2,2,-2,12}=-2。)

最終最終最終最終確認(rèn):

f(x)=x3-3x2+2

f'(x)=3x2-6x=3x(x-2)

令f'(x)=0,得x=0或x=2。

f(-1)=(-1)3-3(-1)2+2=-1-3+2=-2

f(0)=03-3(0)2+2=2

f(2)=23-3(2)2+2=8-12+2=-2

f(3)=33-3(3)2+2=27-27+2=2

區(qū)間端點(diǎn)值:f(-1)=-2,f(3)=2

極值點(diǎn)值:f(0)=2,f(2)=-2

所以最大值為max{-2,2,-2,2}=2,最小值為min{-2,2,-2,2}=-2。

2.最大值:6,最小值:-4

解析:f'(x)=3x2-6x。令f'(x)=0,得x=0或x=2。f(-1)=1+3+2=6,f(0)=0,f(2)=-4+4+2=2,f(3)=27-27+2=2。所以最大值為max{6,0,2,2}=6,最小值為min{6,0,2,2}=-2。

3.邊b=2√3,邊c=4

解析:由正弦定理,AC/sinB=BC/sinA,即AC/sin60°=6/sin45°,解得AC=6*(sin60°/sin45°)=6*(√3/2/(√2/2))=6*(√3/√2)=6√6/2=3√6。由余弦定理,b2=a2+c2-2ac*cosB,即(2√3)2=(√6)2+c2-2√6*c*cos45°,化簡得12=6+c2-2√6*c*(√2/2),即12=6+c2-√3*c,解得c2-√3*c-6=0,(c-3√3)(c+2√3)=0,c=3√3或c=-2√3(舍去)。所以邊b=2√3,邊c=4。

4.∫(x2+2x+1)/xdx=x+2ln|x|+C

解析:∫(x2+2x+1)/xdx=∫(x+2+1/x)dx=∫xdx+∫2dx+∫1/xdx=x/1+2x+ln|x|+C=x+2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論