2024年湖北省孝感市孝南區(qū)八校數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第1頁
2024年湖北省孝感市孝南區(qū)八校數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第2頁
2024年湖北省孝感市孝南區(qū)八校數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第3頁
2024年湖北省孝感市孝南區(qū)八校數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第4頁
2024年湖北省孝感市孝南區(qū)八校數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.一元二次方程的根的情況為()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.只有一個實數(shù)根2.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm3.去年某果園隨機從甲、乙、丙、丁四個品種的葡萄樹中各采摘了10棵,每棵產(chǎn)量的平均數(shù)(單位:千克)及方差(單位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年準備從四個品種中選出一種產(chǎn)量既高又穩(wěn)定的葡萄樹進行種植,應選的品種是(

)A.甲 B.乙 C.丙 D.丁4.一個學習興趣小組有2名女生,3名男生,現(xiàn)要從這5名學生中任選出一人擔當組長,則女生當組長的概率是()A. B. C. D.5.一人乘雪橇沿坡比1:的斜坡筆直滑下,滑下的距離s(m)與時間t(s)之間的關系為s=8t+2t2,若滑到坡底的時間為4s,則此人下降的高度為()A.16m B.32m C.32m D.64m6.如圖,二次函數(shù)的圖象經(jīng)過點,下列說法正確的是()A. B. C. D.圖象的對稱軸是直線7.如圖,在線段AB上有一點C,在AB的同側作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直線BD與線段AE,線段CE分別交于點F,G.對于下列結論:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,則2AD2=DF·DG.其中正確的是()A.①②③④ B.①②③ C.①③④ D.①②8.對于兩個不相等的實數(shù),我們規(guī)定符號表示中的較大值,如:,按照這個規(guī)定,方程的解為()A.2 B.C.或 D.2或9.一組數(shù)據(jù)-3,2,2,0,2,1的眾數(shù)是()A.-3 B.2 C.0 D.110.一張圓形紙片,小芳進行了如下連續(xù)操作:將圓形紙片左右對折,折痕為AB,如圖.將圓形紙片上下折疊,使A、B兩點重合,折痕CD與AB相交于M,如圖.將圓形紙片沿EF折疊,使B、M兩點重合,折痕EF與AB相交于N,如圖.連結AE、AF、BE、BF,如圖.經(jīng)過以上操作,小芳得到了以下結論:;四邊形MEBF是菱形;為等邊三角形;::.以上結論正確的有A.1個 B.2個 C.3個 D.4個11.已知反比例函數(shù)y=﹣,下列結論不正確的是()A.函數(shù)的圖象經(jīng)過點(﹣1,3) B.當x<0時,y隨x的增大而增大C.當x>﹣1時,y>3 D.函數(shù)的圖象分別位于第二、四象限12.如圖所示的幾何體的左視圖是()A. B.C. D.二、填空題(每題4分,共24分)13.在一個不透明的袋子中只裝有n個白球和4個紅球,這些球除顏色外其他均相同.如果從袋子中隨機摸出一個球,摸到紅球的概率是,那么n的值為_____.14.如圖,菱形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別是的邊AB,BC邊的中點若,,則線段EF的長為______.15.當______時,關于的方程有實數(shù)根.16.已知AB∥CD,AD與BC相交于點O.若=,AD=10,則AO=____.17.如圖,已知的面積為48,將沿平移到,使和重合,連結交于,則的面積為__________.18.如圖,一塊飛鏢游戲板由大小相等的小正方形格子構成,向游戲板隨機投擲一枚飛鏢,擊中黑色區(qū)域的概率是______.三、解答題(共78分)19.(8分)如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點,連接AE、CF.(1)求證:四邊形AECF是矩形;(2)若AB=6,求菱形的面積.20.(8分)如圖,在△ABC中,AB=AC.(1)若以點A為圓心的圓與邊BC相切于點D,請在下圖中作出點D;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)的條件下,若該圓與邊AC相交于點E,連接DE,當∠BAC=100°時,求∠AED的度數(shù).21.(8分)從三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.(1)如圖1,在△ABC中,∠A=40°,∠B=60°,當∠BCD=40°時,證明:CD為△ABC的完美分割線.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD是以AC為底邊的等腰三角形,求∠ACB的度數(shù).(3)如圖2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割線,△ACD是以CD為底邊的等腰三角形,求CD的長.22.(10分)如圖,一艘船由A港沿北偏東65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向,求A,C兩港之間的距離.23.(10分)用適當?shù)姆椒ń庀铝蟹匠蹋海?)(x﹣2)2﹣16=1(2)5x2+2x﹣1=1.24.(10分)如圖,在同一平面直角坐標系中,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于A,B兩點,過點A作AC⊥x軸,垂足為點C,AC=2,求k的值.25.(12分)如圖,已知AB是⊙O的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.(1)求證:CD是⊙O的切線;(2)若⊙O的直徑為4,AD=3,試求∠BAC的度數(shù).26.如圖,中,點在邊上,,將線段繞點旋轉到的位置,使得,連接,與交于點(1)求證:;(2)若,,求的度數(shù).

參考答案一、選擇題(每題4分,共48分)1、B【分析】直接利用判別式△判斷即可.【詳解】∵△=∴一元二次方程有兩個不等的實根故選:B.本題考查一元二次方程根的情況,注意在求解判別式△時,正負號不要弄錯了.2、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.3、B【分析】先比較平均數(shù)得到甲組和乙組產(chǎn)量較好,然后比較方差得到乙組的狀態(tài)穩(wěn)定.【詳解】因為甲組、乙組的平均數(shù)丙組比丁組大,而乙組的方差比甲組的小,所以乙組的產(chǎn)量比較穩(wěn)定,所以乙組的產(chǎn)量既高又穩(wěn)定,故選B.本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.4、C【分析】直接利用概率公式求解即可求得答案.【詳解】∵一個學習興趣小組有2名女生,3名男生,∴女生當組長的概率是:.故選:C.此題考查了概率公式的應用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、B【分析】根據(jù)時間,算出斜坡的長度,再根據(jù)坡比和三角函數(shù)的關系,算出人的下降高度即可.【詳解】設斜坡的坡角為α,當t=4時,s=8×4+2×42=64,∵斜坡的坡比1:,∴tanα=,∴α=30°,∴此人下降的高度=×64=32,故選:B.本題考查坡比和三角函數(shù)中正切的關系,屬基礎題.6、D【分析】根據(jù)拋物線與y軸交點的位置即可判斷A選項;根據(jù)拋物線與x軸有兩個交點即可判斷B選項;由圖象可知,當x=1時,圖象在x軸的下方可知,故C錯誤;根據(jù)圖象經(jīng)過點兩點,即可得出對稱軸為直線.【詳解】解:A、由圖可知,拋物線交于y軸負半軸,所以c<0,故A錯誤;B、由圖可知,拋物線與x軸有兩個交點,則,故B錯誤;C、由圖象可知,當x=1時,圖象在x軸的下方,則,故C錯誤;D、因為圖象經(jīng)過點兩點,所以拋物線的對稱軸為直線,故D正確;故選:D.本題考查了二次函數(shù)圖象與系數(shù)的關系,解題的關鍵是掌握二次函數(shù)的圖象和性質(zhì).7、A【解析】利用三角形的內(nèi)角和定理及兩組角分別相等證明①正確;根據(jù)兩組邊成比例夾角相等判斷②正確;利用③的相似三角形證得∠AEC=∠DBC,又對頂角相等,證得③正確;根據(jù)△ACE∽△DCB證得F、E、B、C四點共圓,由此推出△DCF∽△DGC,列比例線段即可證得④正確.【詳解】①正確;在等腰△ACD和等腰△ECB中AC=AD,EC=EB,∠DAC=∠CEB,∴∠ACD=∠ADC=∠BCE=∠BEC,∴∠DCG=180-∠ACD-∠BCE=∠BEC,∵∠DGC=∠BGE,∴△DCG∽△BEG;②正確;∵∠ACD+∠DCG=∠BCE+∠DCG,∴∠ACE=∠DCB,∵,∴△ACE∽△DCB;③正確;∵△ACE∽△DCB,∴∠AEC=∠DBC,∵∠FGE=∠CGB,∴△FGE∽△CGB,∴GF·GB=GC·GE;④正確;如圖,連接CF,由②可得△ACE∽△DCB,∴∠AEC=∠DBC,∴F、E、B、C四點共圓,∴∠CFB=∠CEB=90,∵∠ACD=∠ECB=45,∴∠DCE=90,∴△DCF∽△DGC∴,∴,∵,∴2AD2=DF·DG.故選:A.此題考查相似三角形的判定及性質(zhì),等腰三角形的性質(zhì),③的證明可通過②的相似推出所需要的條件繼而得到證明;④是本題的難點,需要重新畫圖,并根據(jù)條件判定DF、DG所在的三角形相似,由此可判斷連接CF,由此證明F、E、B、C四點共圓,得到∠CFB=∠CEB=90是解本題關鍵.8、D【分析】分兩種情況討論:①,②,根據(jù)題意得出方程求解即可.【詳解】有意義,則①當,即時,由題意得,去分母整理得,解得經(jīng)檢驗,是分式方程的解,符合題意;②當,即時,由題意得,去分母整理得,解得,,經(jīng)檢驗,,是分式方程的解,但,∴取綜上所述,方程的解為2或,故選:D.本題考查了新型定義下的分式方程與解一元二次方程,理解題意,進行分類討論是解題的關鍵.9、B【解析】一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)是眾數(shù),根據(jù)眾數(shù)的定義進行求解即可得.【詳解】數(shù)據(jù)-3,2,2,0,2,1中,2出現(xiàn)了3次,出現(xiàn)次數(shù)最多,其余的都出現(xiàn)了1次,所以這組數(shù)據(jù)的眾數(shù)是2,故選B.【點睛】本題考查了眾數(shù)的定義,熟練掌握眾數(shù)的定義是解題的關鍵.10、D【分析】根據(jù)折疊的性質(zhì)可得∠BMD=∠BNF=90°,然后利用同位角相等,兩直線平行可得CD∥EF,從而判定①正確;根據(jù)垂徑定理可得BM垂直平分EF,再求出BN=MN,從而得到BM、EF互相垂直平分,然后根據(jù)對角線互相垂直平分的四邊形是菱形求出四邊形MEBF是菱形,從而得到②正確;根據(jù)直角三角形角所對的直角邊等于斜邊的一半求出∠MEN=30°,然后求出∠EMN=60°,根據(jù)等邊對等角求出∠AEM=∠EAM,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠AEM=30°,從而得到∠AEF=60°,同理求出∠AFE=60°,再根據(jù)三角形的內(nèi)角和等于180°求出∠EAF=60°,從而判定△AEF是等邊三角形,③正確;設圓的半徑為r,求出EN=,則可得EF=2EN=,即可得S四邊形AEBF:S扇形BEMF的答案,所以④正確.【詳解】解:∵紙片上下折疊A、B兩點重合,∴∠BMD=90°,∵紙片沿EF折疊,B、M兩點重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正確;根據(jù)垂徑定理,BM垂直平分EF,又∵紙片沿EF折疊,B、M兩點重合,∴BN=MN,∴BM、EF互相垂直平分,∴四邊形MEBF是菱形,故②正確;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半徑),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等邊三角形,故③正確;設圓的半徑為r,則EN=,∴EF=2EN=,∴S四邊形AEBF:S扇形BEMF=故④正確,綜上所述,結論正確的是①②③④共4個.故選:D.本題圓的綜合題型,主要考查了翻折變換的性質(zhì),平行線的判定,對角線互相垂直平分的四邊形是菱形,等邊三角形的判定與性質(zhì).注意掌握折疊前后圖形的對應關系是關鍵.11、C【分析】根據(jù)反比例函數(shù)的性質(zhì):當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.進行判斷即可.【詳解】A、反比例函數(shù)y=﹣的圖象必經(jīng)過點(﹣1,3),原說法正確,不合題意;B、k=﹣3<0,當x<0,y隨x的增大而增大,原說法正確,不符合題意;C、當x>﹣1時,y>3或y<0,原說法錯誤,符合題意;D、k=﹣3<0,函數(shù)的圖象分別位于第二、四象限,原說法正確,不符合題意;故選:C.本題主要考查反比例函數(shù)的性質(zhì),掌握反比例函數(shù)的圖象和性質(zhì),是解題的關鍵.12、A【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看共一列,第一層是一個小正方形,第二層是一個小正方形,故選:A.本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.二、填空題(每題4分,共24分)13、1.【分析】根據(jù)概率公式列方程計算即可.【詳解】解:根據(jù)題意得,解得n=1,經(jīng)檢驗:n=41是分式方程的解,故答案為:1.題考查了概率公式的運用,理解用可能出現(xiàn)的結果數(shù)除以所有可能出現(xiàn)的結果數(shù)是解答本題的關鍵.14、3【分析】由菱形性質(zhì)得AC⊥BD,BO=,AO=,由勾股定理得AO=,由中位線性質(zhì)得EF=.【詳解】因為,菱形ABCD中,對角線AC,BD相交于點O,所以,AC⊥BD,BO=,AO=,所以,AO=,所以,AC=2AO=6,又因為E,F(xiàn)分別是的邊AB,BC邊的中點所以,EF=.故答案為3本題考核知識點:菱形,勾股定理,三角形中位線.解題關鍵點:根據(jù)勾股定理求出線段長度,再根據(jù)三角形中位線求出結果.15、【分析】根據(jù)題意分關于的方程為一元一次方程和一元二次方程進行分析計算.【詳解】解:①當關于的方程為一元一次方程時,有,解得,又因為時,方程無解,所以;②當關于的方程為一元二次方程時,根據(jù)題意有,解得;綜上所述可知:.故答案為:.本題考查一元二次方程根的判別式,解答此題時要注意關于的方程為一元一次方程的情況.16、1.【解析】∵AB∥CD,解得,AO=1,

故答案是:1.【點睛】運用了平行線分線段成比例定理,靈活運用定理、找準對應關系是解題的關鍵.17、24【解析】根據(jù)平移變換只改變圖形的位置,不改變圖形的形狀與大小,可得∠B=∠A′CC′,BC=B′C′,再根據(jù)同位角相等,兩直線平行可得CD∥

AB,然后求出CD=AB,點C"到A′B′的距離等于點C到AB的距離,根據(jù)等高的三角形的面積的比等于底邊的比即可求解.也可用相似三角形的面積比等于相似比的平方來求.【詳解】解:根據(jù)題意得

∠B=∠A′CC′,BC=B′C′,

∴CD//AB,CD=AB(三角形的中位線),

點C′到A′C′的距離等于點C到AB的距離,∴△CDC′的面積=△ABC的面積,=×48

=24

故答案為:24本題考查的是三角形面積的求法之一,等高的三角形的面積比等于底的比,也可用相似三角形的面積比等于相似比的平方來求得.18、【分析】求出黑色區(qū)域面積與正方形總面積之比即可得答案.【詳解】圖中有9個小正方形,其中黑色區(qū)域一共有3個小正方形,所以隨意投擲一個飛鏢,擊中黑色區(qū)域的概率是,故答案為.本題考查了幾何概率,熟練掌握概率的計算公式是解題的關鍵.注意面積之比幾何概率.三、解答題(共78分)19、(1)證明見解析;(2)24【解析】試題分析:(1)首先證明△ABC是等邊三角形,進而得出∠AEC=90°,四邊形AECF是平行四邊形,即可得出答案;(2)利用勾股定理得出AE的長,進而求出菱形的面積.試題解析:(1)∵四邊形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等邊三角形,∵E是BC的中點,∴AE⊥BC,∴∠AEC=90°,∵E、F分別是BC、AD的中點,∴AF=AD,EC=BC,∵四邊形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四邊形AECF是平行四邊形,又∵∠AEC=90°,∴四邊形AECF是矩形;(2)在Rt△ABE中,AE=,所以,S菱形ABCD=6×3=18.考點:1.菱形的性質(zhì);2..矩形的判定.20、(1)詳見解析;(2)65°.【分析】(1)分析題干可知:作AD⊥BC,由于AB=AC,由等腰三角形的性質(zhì)可知當AD平分∠BAC即可滿足:以點A為圓心的圓與邊BC相切于點D;(2)由AD平分∠BAC,可得由圓A半徑相等AD=AE,可得∠ADE=∠AED,即可得出答案.【詳解】解:(1)如圖所示,點D為所求(2)如圖:∵AD平分∠BAC∴在中,AD=AE,∴∠ADE=∠AED∴本題考查作圖,切線的判定和性質(zhì)等知識,掌握圓的基本性質(zhì)是解題的關鍵.21、(1)證明見解析;(2)∠ACB=96°;(3)CD的長為-1.【分析】(1)根據(jù)三角形內(nèi)角和定理可求出∠ACB=80°,進而可得∠ACD=40°,即可證明AD=CD,由∠BCD=∠A=40°,∠B為公共角可證明三角形BCD∽△BAC,即可得結論;(2)根據(jù)等腰三角形的性質(zhì)可得∠ACD=∠A=48°,根據(jù)相似三角形的性質(zhì)可得∠BCD=∠A=48°,進而可得∠ACB的度數(shù);(3)由相似三角形的性質(zhì)可得∠BCD=∠A,由AC=BC=2可得∠A=∠B,即可證明∠BCD=∠B,可得BD=CD,根據(jù)相似三角形的性質(zhì)列方程求出CD的長即可.【詳解】(1)∵∠A=40°,∠B=60°,∴∠ACB=180°-40°-60°=80°,∵∠BCD=40°,∴∠ACD=∠ACB-∠BCD=40°,∴∠ACD=∠A,∴AD=CD,即△ACD是等腰三角形,∵∠BCD=∠A=40°,∠B為公共角,∴△BCD∽△BAC,∴CD為△ABC的完美分割線.(2)∵△ACD是以AC為底邊的等腰三角形,∴AD=CD,∴∠ACD=∠A=48°,∵CD是△ABC的完美分割線,∴△BCD∽△BAC,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(3)∵△ACD是以CD為底邊的等腰三角形,∴AD=AC=2,∵CD是△ABC的完美分割線,∴△BCD∽△BAC,∴∠BCD=∠A,,∵AC=BC=2,∴∠A=∠B,∴∠BCD=∠B,∴BD=CD,∴,即,解得:CD=-1或CD=--1(舍去),∴CD的長為-1.本題考查相似三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識,正確理解完美分割線的定義并熟練掌握相似三角形的性質(zhì)是解題關鍵.22、(90+30)km.【分析】過B作BE⊥AC于E,在Rt△ABE中,由∠ABE=45°,AB=,可得AE=BE=AB=90km,在Rt△CBE中,由∠ACB=60°,可得CE=BE=30km,繼而可得AC=AE+CE=90+30.【詳解】解:根據(jù)題意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=90,過B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=,∴AE=BE=AB=90km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=30km,∴AC=AE+CE=90+30,∴A,C兩港之間的距離為(90+30)km.本題考查了解直角三角形的應用,方向角問題,三角形的內(nèi)角和,是基礎知識比較簡單.23、(1)x1=-2,x2=6;(2)x1=,x2=【分析】(1)先移項,兩邊再開方,即可得出兩個一元一次方程,求出方程的解即可;(2)求出b2-4ac的值,代入公式求出即可.【詳解】(1)(x-2)2-16=1,(x-2)2=16,兩邊開方得:x-2=±4,解得:x1=-2,x2=6;(2)5x2+2x-1=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論