長(zhǎng)沙職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與數(shù)據(jù)倉(cāng)庫(kù)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
長(zhǎng)沙職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與數(shù)據(jù)倉(cāng)庫(kù)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
長(zhǎng)沙職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與數(shù)據(jù)倉(cāng)庫(kù)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
長(zhǎng)沙職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與數(shù)據(jù)倉(cāng)庫(kù)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
長(zhǎng)沙職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與數(shù)據(jù)倉(cāng)庫(kù)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)長(zhǎng)沙職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與數(shù)據(jù)倉(cāng)庫(kù)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析的過(guò)程中,數(shù)據(jù)的預(yù)處理和特征工程可能會(huì)占用大量時(shí)間。假設(shè)你面臨時(shí)間緊迫的情況,以下關(guān)于時(shí)間分配的策略,哪一項(xiàng)是最明智的?()A.跳過(guò)預(yù)處理和特征工程,直接進(jìn)行建模分析B.減少數(shù)據(jù)清洗的工作,重點(diǎn)放在特征工程上C.合理分配時(shí)間,確保預(yù)處理和特征工程的質(zhì)量,以提高模型性能D.把大部分時(shí)間花在模型選擇和調(diào)優(yōu)上,忽略數(shù)據(jù)準(zhǔn)備2、回歸分析是數(shù)據(jù)分析中的常用方法。假設(shè)要研究廣告投入與銷售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡(jiǎn)單線性回歸足以捕捉廣告投入和銷售額之間的復(fù)雜非線性關(guān)系B.多元線性回歸中,自變量越多,模型的解釋能力就越強(qiáng)C.在建立回歸模型前,不需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理D.回歸模型的擬合優(yōu)度(R2)越高,說(shuō)明模型對(duì)數(shù)據(jù)的擬合效果越好3、在進(jìn)行數(shù)據(jù)分析的實(shí)驗(yàn)時(shí),交叉驗(yàn)證是常用的評(píng)估模型穩(wěn)定性的方法。假設(shè)你在比較不同的分類算法,以下關(guān)于交叉驗(yàn)證策略的選擇,哪一項(xiàng)是最合理的?()A.簡(jiǎn)單隨機(jī)劃分?jǐn)?shù)據(jù)集,進(jìn)行多次訓(xùn)練和驗(yàn)證B.使用K折交叉驗(yàn)證,平均多個(gè)結(jié)果以獲得更可靠的評(píng)估C.采用留一法交叉驗(yàn)證,確保每個(gè)樣本都被用于驗(yàn)證D.不進(jìn)行交叉驗(yàn)證,只進(jìn)行一次訓(xùn)練和驗(yàn)證4、在處理大數(shù)據(jù)集時(shí),分布式計(jì)算框架能夠提高計(jì)算效率。假設(shè)要分析海量的社交媒體數(shù)據(jù),以下關(guān)于分布式計(jì)算框架選擇的描述,正確的是:()A.Hadoop適合處理大規(guī)模的結(jié)構(gòu)化數(shù)據(jù),但對(duì)實(shí)時(shí)性要求高的任務(wù)不太適用B.Spark僅能處理批處理任務(wù),無(wú)法支持流處理C.Flink在處理流數(shù)據(jù)方面表現(xiàn)不佳,主要用于批處理D.這些分布式計(jì)算框架都差不多,隨便選擇一個(gè)都能滿足需求5、在進(jìn)行數(shù)據(jù)分析時(shí),如果數(shù)據(jù)不符合正態(tài)分布,以下哪種統(tǒng)計(jì)方法可能不再適用?()A.t檢驗(yàn)B.方差分析C.線性回歸D.以上都是6、在數(shù)據(jù)分析中,模型的過(guò)擬合和欠擬合是常見的問(wèn)題。假設(shè)要訓(xùn)練一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,以下關(guān)于防止過(guò)擬合和欠擬合的方法描述,正確的是:()A.不進(jìn)行數(shù)據(jù)劃分和交叉驗(yàn)證,直接在整個(gè)數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點(diǎn)和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進(jìn)行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過(guò)擬合和欠擬合D.認(rèn)為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化7、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集,其中包含大量相關(guān)的特征,通過(guò)PCA進(jìn)行降維時(shí),以下哪個(gè)說(shuō)法是正確的?()A.降維后的主成分?jǐn)?shù)量一定少于原始特征數(shù)量B.主成分是原始特征的線性組合C.降維過(guò)程會(huì)丟失部分?jǐn)?shù)據(jù)信息D.以上都是8、在進(jìn)行數(shù)據(jù)分類任務(wù)時(shí),需要選擇合適的分類算法。假設(shè)要對(duì)一組醫(yī)學(xué)圖像進(jìn)行疾病分類,圖像特征復(fù)雜且類別不均衡。以下哪種分類算法在處理這種具有挑戰(zhàn)性的分類問(wèn)題時(shí)可能表現(xiàn)更好?()A.支持向量機(jī)B.隨機(jī)森林C.樸素貝葉斯D.K最近鄰算法9、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種高級(jí)的技術(shù)。以下關(guān)于數(shù)據(jù)挖掘的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以從大量的數(shù)據(jù)中發(fā)現(xiàn)隱藏的模式和規(guī)律B.數(shù)據(jù)挖掘可以使用機(jī)器學(xué)習(xí)算法進(jìn)行數(shù)據(jù)的分類、聚類和預(yù)測(cè)C.數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和知識(shí),對(duì)于普通用戶來(lái)說(shuō)難以掌握D.數(shù)據(jù)挖掘的結(jié)果一定是準(zhǔn)確無(wú)誤的,可以直接用于決策10、在對(duì)一個(gè)社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進(jìn)行分析,例如好友關(guān)系、群組活動(dòng)等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點(diǎn)。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識(shí)別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是11、在數(shù)據(jù)分析中,模型選擇和調(diào)優(yōu)是提高性能的關(guān)鍵步驟。假設(shè)要在多個(gè)分類模型中選擇最優(yōu)的模型,以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)交叉驗(yàn)證等技術(shù)來(lái)評(píng)估不同模型在不同參數(shù)下的性能B.網(wǎng)格搜索和隨機(jī)搜索是常用的參數(shù)調(diào)優(yōu)方法,可以找到較優(yōu)的參數(shù)組合C.模型的復(fù)雜度越高,性能就越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.結(jié)合業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn),選擇適合的模型和調(diào)優(yōu)方法12、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)有很多種,其中星型架構(gòu)是一種常用的架構(gòu)。以下關(guān)于星型架構(gòu)的描述中,錯(cuò)誤的是?()A.星型架構(gòu)由事實(shí)表和維度表組成B.事實(shí)表中包含了大量的詳細(xì)數(shù)據(jù),維度表中包含了對(duì)事實(shí)表的描述信息C.星型架構(gòu)的數(shù)據(jù)查詢效率較高,適用于大規(guī)模數(shù)據(jù)集D.星型架構(gòu)的設(shè)計(jì)和維護(hù)比較復(fù)雜,需要專業(yè)的技術(shù)和知識(shí)13、某數(shù)據(jù)分析項(xiàng)目需要對(duì)大量文本數(shù)據(jù)進(jìn)行情感分析。以下哪種技術(shù)常用于文本情感分析?()A.決策樹B.樸素貝葉斯C.支持向量機(jī)D.詞袋模型14、數(shù)據(jù)分析中的抽樣方法用于從總體中選取部分樣本進(jìn)行分析。假設(shè)我們要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行抽樣。以下關(guān)于抽樣方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.簡(jiǎn)單隨機(jī)抽樣每個(gè)樣本被選中的概率相等B.分層抽樣可以保證樣本在不同層次上具有代表性C.整群抽樣效率高,但可能導(dǎo)致樣本的偏差D.抽樣方法對(duì)數(shù)據(jù)分析的結(jié)果沒有影響,任何抽樣方法都可以使用15、在數(shù)據(jù)分析中,探索性數(shù)據(jù)分析(EDA)用于初步了解數(shù)據(jù)的特征和分布。假設(shè)要對(duì)一個(gè)新收集的社交媒體數(shù)據(jù)進(jìn)行EDA,包括用戶的年齡、性別、地域和發(fā)布內(nèi)容等信息。以下哪種EDA方法在快速發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和關(guān)系方面更有效?()A.數(shù)據(jù)可視化B.統(tǒng)計(jì)描述C.相關(guān)性分析D.以上方法結(jié)合使用16、數(shù)據(jù)分析中的時(shí)間序列分析常用于預(yù)測(cè)未來(lái)趨勢(shì)。假設(shè)要預(yù)測(cè)未來(lái)一個(gè)月的某商品銷售量,該商品的銷售數(shù)據(jù)具有明顯的季節(jié)性和趨勢(shì)性。以下哪種時(shí)間序列預(yù)測(cè)模型在這種情況下更有可能提供準(zhǔn)確的預(yù)測(cè)?()A.移動(dòng)平均模型B.指數(shù)平滑模型C.ARIMA模型D.Prophet模型17、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布情況,以下哪種圖表最為合適?()A.折線圖B.柱狀圖C.箱線圖D.餅圖18、在數(shù)據(jù)分析中,建立回歸模型用于預(yù)測(cè)是常見的任務(wù)。假設(shè)我們要根據(jù)房屋的面積、位置和房齡等因素來(lái)預(yù)測(cè)房?jī)r(jià),以下哪種回歸模型可能在這種情況下表現(xiàn)較好?()A.線性回歸B.邏輯回歸C.多項(xiàng)式回歸D.嶺回歸19、在數(shù)據(jù)分析中,數(shù)據(jù)集成用于將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要集成來(lái)自不同數(shù)據(jù)庫(kù)的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)集成的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.需要解決數(shù)據(jù)格式不一致、字段命名差異等問(wèn)題B.可以使用ETL(Extract,Transform,Load)工具來(lái)實(shí)現(xiàn)數(shù)據(jù)的抽取、轉(zhuǎn)換和加載C.數(shù)據(jù)集成過(guò)程中可能會(huì)引入重復(fù)數(shù)據(jù)和數(shù)據(jù)沖突,需要進(jìn)行處理D.數(shù)據(jù)集成可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的質(zhì)量和一致性20、數(shù)據(jù)分析在金融領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一家銀行要評(píng)估客戶的信用風(fēng)險(xiǎn)。以下關(guān)于數(shù)據(jù)分析在金融中的描述,哪一項(xiàng)是不正確的?()A.可以建立信用評(píng)分模型,預(yù)測(cè)客戶違約的可能性B.分析市場(chǎng)趨勢(shì),制定投資策略C.數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用完全沒有風(fēng)險(xiǎn),不會(huì)導(dǎo)致錯(cuò)誤的決策D.監(jiān)測(cè)金融交易,防范欺詐行為21、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),數(shù)據(jù)標(biāo)準(zhǔn)化或歸一化是常見的操作。假設(shè)要對(duì)一組包含不同量綱的特征數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化,以下哪種方法可能是最常用的?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上方法使用頻率相同22、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)是一種重要的存儲(chǔ)和管理數(shù)據(jù)的方式。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)可以將來(lái)自不同數(shù)據(jù)源的數(shù)據(jù)整合在一起B(yǎng).數(shù)據(jù)倉(cāng)庫(kù)可以提供高效的數(shù)據(jù)查詢和分析功能C.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)是實(shí)時(shí)更新的,反映了最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要投入大量的時(shí)間和資源23、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)降維,假設(shè)數(shù)據(jù)集具有高維度,但其中可能存在冗余和無(wú)關(guān)的特征。為了減少計(jì)算復(fù)雜度并提高分析效率,以下哪種降維方法可能是有效的?()A.主成分分析(PCA),提取主要成分B.線性判別分析(LDA),考慮類別信息C.局部線性嵌入(LLE),保留局部結(jié)構(gòu)D.不進(jìn)行降維,直接處理高維數(shù)據(jù)24、在數(shù)據(jù)分析中,若要評(píng)估一個(gè)預(yù)測(cè)模型的準(zhǔn)確性,以下哪個(gè)指標(biāo)是常用的?()A.均方誤差B.標(biāo)準(zhǔn)差C.偏度D.峰度25、假設(shè)我們要評(píng)估一個(gè)分類模型的性能,除了準(zhǔn)確率外,以下哪個(gè)指標(biāo)還能反映模型對(duì)于不同類別的區(qū)分能力?()A.召回率B.F1值C.均方誤差D.混淆矩陣二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何處理數(shù)據(jù)中的長(zhǎng)尾分布?闡述應(yīng)對(duì)長(zhǎng)尾分布的方法和策略,并舉例說(shuō)明。2、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何進(jìn)行數(shù)據(jù)的探索性分析(EDA)?解釋EDA的主要步驟和目的,以及常用的工具和技術(shù)。3、(本題5分)簡(jiǎn)述數(shù)據(jù)分析師如何進(jìn)行問(wèn)題定義和需求分析,包括與業(yè)務(wù)部門溝通、理解業(yè)務(wù)背景和目標(biāo)等,并舉例說(shuō)明。4、(本題5分)在數(shù)據(jù)分析項(xiàng)目中,如何制定合理的數(shù)據(jù)收集策略?請(qǐng)考慮數(shù)據(jù)來(lái)源、樣本量、數(shù)據(jù)質(zhì)量等因素,并舉例說(shuō)明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)一家動(dòng)漫周邊店收集了產(chǎn)品銷售數(shù)據(jù)、動(dòng)漫熱門程度、顧客年齡分布等。優(yōu)化動(dòng)漫周邊產(chǎn)品的進(jìn)貨和陳列策略。2、(本題5分)一家珠寶品牌收集了店鋪銷售數(shù)據(jù),包括首飾類型、材質(zhì)、價(jià)格、銷售城市、促銷策略等。研究不同城市對(duì)不同類型和材質(zhì)首飾的購(gòu)買偏好以及促銷策略的效果。3、(本題5分)某在線醫(yī)療平臺(tái)存有患者的就診數(shù)據(jù),包括疾病類型、就診時(shí)間、醫(yī)生診斷、治療方案等。分析不同疾病類型在不同時(shí)間段的就診頻率和治療方案的特點(diǎn)。4、(本題5分)一家數(shù)碼產(chǎn)品專賣店擁有銷售數(shù)據(jù)、產(chǎn)品熱度、顧客咨詢問(wèn)題等。調(diào)整數(shù)碼產(chǎn)品的進(jìn)貨策略和銷售重點(diǎn)。5、(本題5分)某超市的生鮮類目記錄了銷售數(shù)據(jù),包括商品種類、銷售數(shù)量、價(jià)格、促銷活動(dòng)、季節(jié)因素等。分析季節(jié)因素對(duì)不同生鮮商品銷售和促銷活動(dòng)效果的影響。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)制造業(yè)中的數(shù)據(jù)分析可以幫助企業(yè)提高生產(chǎn)效率、降低成本和改

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論