高中數(shù)學(xué)參數(shù)試題及答案_第1頁(yè)
高中數(shù)學(xué)參數(shù)試題及答案_第2頁(yè)
高中數(shù)學(xué)參數(shù)試題及答案_第3頁(yè)
高中數(shù)學(xué)參數(shù)試題及答案_第4頁(yè)
高中數(shù)學(xué)參數(shù)試題及答案_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高中數(shù)學(xué)參數(shù)試題及答案

一、單項(xiàng)選擇題(每題2分,共20分)1.直線\(x=1+2t\),\(y=2+t\)(\(t\)為參數(shù))的斜率是()A.\(\frac{1}{2}\)B.2C.\(-\frac{1}{2}\)D.\(-2\)2.曲線\(x=3\cos\theta\),\(y=3\sin\theta\)(\(\theta\)為參數(shù))的圓心坐標(biāo)是()A.\((0,0)\)B.\((3,3)\)C.\((-3,-3)\)D.\((3,0)\)3.已知曲線\(C\)的參數(shù)方程為\(\begin{cases}x=2+\cos\alpha\\y=1+\sin\alpha\end{cases}\)(\(\alpha\)為參數(shù)),則曲線\(C\)的普通方程是()A.\((x-2)^2+(y-1)^2=1\)B.\((x+2)^2+(y+1)^2=1\)C.\((x-2)^2+(y-1)^2=2\)D.\((x+2)^2+(y+1)^2=2\)4.直線\(x=1+t\),\(y=-2+t\)(\(t\)為參數(shù))與\(x\)軸交點(diǎn)的橫坐標(biāo)是()A.\(-1\)B.\(1\)C.\(3\)D.\(-3\)5.若直線\(l\)的參數(shù)方程為\(\begin{cases}x=1+3t\\y=2-4t\end{cases}\)(\(t\)為參數(shù)),則直線\(l\)的傾斜角的余弦值為()A.\(\frac{3}{5}\)B.\(-\frac{3}{5}\)C.\(\frac{4}{5}\)D.\(-\frac{4}{5}\)6.曲線\(x=t^2\),\(y=2t\)(\(t\)為參數(shù))的焦點(diǎn)坐標(biāo)是()A.\((1,0)\)B.\((0,1)\)C.\((\frac{1}{4},0)\)D.\((0,\frac{1}{4})\)7.已知曲線\(C\)的參數(shù)方程\(\begin{cases}x=2\cos\varphi\\y=3\sin\varphi\end{cases}\)(\(\varphi\)為參數(shù)),則曲線\(C\)是()A.圓B.橢圓C.雙曲線D.拋物線8.直線\(x=2+\frac{\sqrt{2}}{2}t\),\(y=1+\frac{\sqrt{2}}{2}t\)(\(t\)為參數(shù))被圓\(x^2+y^2=9\)截得的弦長(zhǎng)為()A.\(\sqrt{14}\)B.\(\sqrt{15}\)C.\(\sqrt{16}\)D.\(\sqrt{17}\)9.曲線\(x=\sin\theta+\cos\theta\),\(y=\sin\theta\cos\theta\)(\(\theta\)為參數(shù))的普通方程是()A.\(x^2=2y+1\)B.\(x^2=2y-1\)C.\(x^2=-2y+1\)D.\(x^2=-2y-1\)10.直線\(l\)的參數(shù)方程為\(\begin{cases}x=a+t\\y=b+t\end{cases}\)(\(t\)為參數(shù)),\(l\)與圓\(x^2+y^2=4\)相交于\(A\),\(B\)兩點(diǎn),若\(\vertAB\vert=2\sqrt{2}\),則\(a^2+b^2\)的值為()A.\(2\)B.\(4\)C.\(6\)D.\(8\)二、多項(xiàng)選擇題(每題2分,共20分)1.下列參數(shù)方程能表示直線的是()A.\(\begin{cases}x=t\\y=2t+1\end{cases}\)(\(t\)為參數(shù))B.\(\begin{cases}x=\cos\theta\\y=\sin\theta\end{cases}\)(\(\theta\)為參數(shù))C.\(\begin{cases}x=1+2t\\y=3+4t\end{cases}\)(\(t\)為參數(shù))D.\(\begin{cases}x=t^2\\y=2t\end{cases}\)(\(t\)為參數(shù))2.對(duì)于曲線\(x=4\cos\theta\),\(y=4\sin\theta\)(\(\theta\)為參數(shù)),下列說(shuō)法正確的是()A.曲線是圓B.半徑為\(4\)C.圓心在原點(diǎn)D.與\(x\)軸交點(diǎn)坐標(biāo)為\((\pm4,0)\)3.直線\(x=1+t\cos\alpha\),\(y=1+t\sin\alpha\)(\(t\)為參數(shù)),以下說(shuō)法正確的是()A.直線過(guò)定點(diǎn)\((1,1)\)B.直線的傾斜角為\(\alpha\)C.當(dāng)\(\alpha=\frac{\pi}{4}\)時(shí),直線的斜率為\(1\)D.\(t\)的幾何意義是直線上的點(diǎn)到定點(diǎn)\((1,1)\)的距離4.曲線\(C\)的參數(shù)方程為\(\begin{cases}x=3+2\cos\beta\\y=-1+2\sin\beta\end{cases}\)(\(\beta\)為參數(shù)),則()A.曲線\(C\)的普通方程是\((x-3)^2+(y+1)^2=4\)B.曲線\(C\)表示以\((3,-1)\)為圓心,\(2\)為半徑的圓C.曲線\(C\)與\(y\)軸交點(diǎn)坐標(biāo)為\((0,-1\pm\sqrt{5})\)D.曲線\(C\)與\(x\)軸交點(diǎn)坐標(biāo)為\((3\pm2,0)\)5.下列參數(shù)方程與普通方程\(x^2+y^2=1\)等價(jià)的是()A.\(\begin{cases}x=\cost\\y=\sint\end{cases}\)(\(t\)為參數(shù))B.\(\begin{cases}x=\sint\\y=\cost\end{cases}\)(\(t\)為參數(shù))C.\(\begin{cases}x=\cos^2t\\y=\sin^2t\end{cases}\)(\(t\)為參數(shù))D.\(\begin{cases}x=\cost\\y=-\sint\end{cases}\)(\(t\)為參數(shù))6.直線\(l\)的參數(shù)方程為\(\begin{cases}x=2+t\\y=3-t\end{cases}\)(\(t\)為參數(shù)),則()A.直線\(l\)的斜率為\(-1\)B.直線\(l\)與\(x\)軸交點(diǎn)坐標(biāo)為\((5,0)\)C.直線\(l\)與\(y\)軸交點(diǎn)坐標(biāo)為\((0,5)\)D.直線\(l\)的傾斜角為\(\frac{3\pi}{4}\)7.曲線\(x=2+\sqrt{3}\cos\gamma\),\(y=1+\sqrt{3}\sin\gamma\)(\(\gamma\)為參數(shù)),則()A.曲線是圓B.圓心坐標(biāo)為\((2,1)\)C.半徑為\(\sqrt{3}\)D.與直線\(y=x\)有兩個(gè)交點(diǎn)8.已知直線\(l\)的參數(shù)方程\(\begin{cases}x=1+\frac{1}{2}t\\y=2+\frac{\sqrt{3}}{2}t\end{cases}\)(\(t\)為參數(shù)),圓\(C\)的方程\(x^2+y^2=9\),則()A.直線\(l\)過(guò)定點(diǎn)\((1,2)\)B.直線\(l\)的傾斜角為\(\frac{\pi}{3}\)C.直線\(l\)與圓\(C\)相交D.直線\(l\)被圓\(C\)截得的弦長(zhǎng)為\(\sqrt{31}\)9.曲線\(C\)的參數(shù)方程\(\begin{cases}x=a+r\cos\theta\\y=b+r\sin\theta\end{cases}\)(\(\theta\)為參數(shù)),下列說(shuō)法正確的是()A.曲線\(C\)表示圓B.圓心坐標(biāo)為\((a,b)\)C.半徑為\(r\)D.當(dāng)\(a=b=0\),\(r=1\)時(shí),曲線\(C\)就是單位圓10.直線\(x=m+t\),\(y=n-t\)(\(t\)為參數(shù)),則()A.直線斜率為\(-1\)B.直線過(guò)點(diǎn)\((m,n)\)C.直線與\(x\)軸交點(diǎn)為\((m+n,0)\)D.直線與\(y\)軸交點(diǎn)為\((0,n-m)\)三、判斷題(每題2分,共20分)1.直線\(x=3+2t\),\(y=4+3t\)(\(t\)為參數(shù))的斜率為\(\frac{3}{2}\)。()2.曲線\(x=\cos^2t\),\(y=\sin^2t\)(\(t\)為參數(shù))的普通方程是\(x+y=1\)。()3.直線\(x=1+t\),\(y=2-t\)(\(t\)為參數(shù))與圓\(x^2+y^2=4\)一定相交。()4.曲線\(x=5\cos\theta\),\(y=5\sin\theta\)(\(\theta\)為參數(shù))的圓心是\((0,0)\),半徑為\(5\)。()5.直線\(x=2+t\cos\frac{\pi}{6}\),\(y=3+t\sin\frac{\pi}{6}\)(\(t\)為參數(shù))的傾斜角是\(\frac{\pi}{6}\)。()6.曲線\(x=t\),\(y=t^2\)(\(t\)為參數(shù))的焦點(diǎn)坐標(biāo)是\((0,\frac{1}{4})\)。()7.直線\(x=1+3t\),\(y=2+4t\)(\(t\)為參數(shù))的普通方程是\(4x-3y+2=0\)。()8.曲線\(x=4\cos\theta+1\),\(y=4\sin\theta-2\)(\(\theta\)為參數(shù))的普通方程是\((x-1)^2+(y+2)^2=16\)。()9.直線\(x=a+t\),\(y=b-t\)(\(t\)為參數(shù))的斜率為\(1\)。()10.曲線\(x=\sin\theta\),\(y=\cos\theta\)(\(\theta\)為參數(shù))與直線\(y=x\)有兩個(gè)交點(diǎn)。()四、簡(jiǎn)答題(每題5分,共20分)1.將參數(shù)方程\(\begin{cases}x=1+2\cos\theta\\y=2+2\sin\theta\end{cases}\)(\(\theta\)為參數(shù))化為普通方程。答案:由\(x=1+2\cos\theta\)得\(\cos\theta=\frac{x-1}{2}\),\(y=2+2\sin\theta\)得\(\sin\theta=\frac{y-2}{2}\)。因?yàn)閈(\cos^2\theta+\sin^2\theta=1\),所以\((\frac{x-1}{2})^2+(\frac{y-2}{2})^2=1\),即\((x-1)^2+(y-2)^2=4\)。2.求直線\(x=2+t\),\(y=3-2t\)(\(t\)為參數(shù))的斜率和傾斜角。答案:將參數(shù)方程化為普通方程\(y=3-2(x-2)\),即\(y=-2x+7\),斜率\(k=-2\)。設(shè)傾斜角為\(\alpha\),\(\tan\alpha=-2\),則\(\alpha=\pi-\arctan2\)。3.已知曲線\(C\)的參數(shù)方程\(\begin{cases}x=3\cos\varphi\\y=2\sin\varphi\end{cases}\)(\(\varphi\)為參數(shù)),求曲線\(C\)的離心率。答案:由參數(shù)方程可得普通方程\(\frac{x^2}{9}+\frac{y^2}{4}=1\),\(a=3\),\(b=2\),則\(c=\sqrt{a^2-b^2}=\sqrt{5}\),離心率\(e=\frac{c}{a}=\frac{\sqrt{5}}{3}\)。4.直線\(l\)的參數(shù)方程為\(\begin{cases}x=1+t\\y=1+2t\end{cases}\)(\(t\)為參數(shù)),圓\(C\)的方程為\(x^2+y^2=9\),求直線\(l\)被圓\(C\)截得的弦長(zhǎng)。答案:將參數(shù)方程化為普通方程\(y=2x-1\)。圓心\((0,0)\)到直線距離\(d=\frac{\vert-1\vert}{\sqrt{2^2+1^2}}=\frac{\sqrt{5}}{5}\),半徑\(r=3\),弦長(zhǎng)\(=2\sqrt{r^2-d^

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論