浙江財(cái)經(jīng)大學(xué)《賽事專題設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
浙江財(cái)經(jīng)大學(xué)《賽事專題設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
浙江財(cái)經(jīng)大學(xué)《賽事專題設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
浙江財(cái)經(jīng)大學(xué)《賽事專題設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
浙江財(cái)經(jīng)大學(xué)《賽事專題設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁浙江財(cái)經(jīng)大學(xué)《賽事專題設(shè)計(jì)》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺中,深度估計(jì)是確定場景中物體距離相機(jī)的距離。以下關(guān)于深度估計(jì)的說法,錯誤的是()A.可以通過立體視覺、結(jié)構(gòu)光或飛行時間等技術(shù)來獲取深度信息B.深度學(xué)習(xí)方法在單目深度估計(jì)中取得了顯著進(jìn)展C.深度估計(jì)對于三維重建、虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用具有重要意義D.深度估計(jì)的結(jié)果總是非常精確,不需要進(jìn)行后處理和優(yōu)化2、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項(xiàng)是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會對跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢,提高跟蹤性能3、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域準(zhǔn)確分割出來。以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的分割方法簡單高效,適用于所有類型的醫(yī)學(xué)圖像分割B.區(qū)域生長法能夠根據(jù)像素的相似性進(jìn)行分割,但容易受到噪聲的影響C.圖割算法在處理復(fù)雜的圖像結(jié)構(gòu)時表現(xiàn)不佳,難以得到準(zhǔn)確的分割結(jié)果D.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中無法處理不同大小的病變區(qū)域4、計(jì)算機(jī)視覺中的視頻理解任務(wù)包括對視頻內(nèi)容的分析和解釋。假設(shè)要理解一段新聞視頻的主要內(nèi)容和事件發(fā)展。以下關(guān)于視頻理解的描述,哪一項(xiàng)是不正確的?()A.可以通過對視頻中的幀進(jìn)行分類、目標(biāo)檢測和跟蹤來實(shí)現(xiàn)視頻理解B.深度學(xué)習(xí)中的注意力機(jī)制可以幫助聚焦視頻中的關(guān)鍵信息,提高理解的準(zhǔn)確性C.視頻理解只需要關(guān)注視覺信息,不需要考慮音頻和文字等其他模態(tài)的信息D.可以結(jié)合知識圖譜和語義理解技術(shù),對視頻中的內(nèi)容進(jìn)行更深入的分析和解釋5、計(jì)算機(jī)視覺在文物保護(hù)和數(shù)字化中的應(yīng)用可以幫助記錄和分析文物信息。假設(shè)要對一件古老的雕塑進(jìn)行三維數(shù)字化和表面紋理分析,以下關(guān)于文物保護(hù)計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學(xué)習(xí)的方法更精確B.文物的復(fù)雜形狀和表面材質(zhì)對數(shù)字化和分析過程沒有挑戰(zhàn)C.結(jié)合多種成像技術(shù)和計(jì)算機(jī)視覺算法能夠更全面地獲取文物的信息D.文物保護(hù)中的計(jì)算機(jī)視覺應(yīng)用不需要考慮對文物的非接觸性和無損性要求6、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計(jì)的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到圖像的多層次特征,具有很強(qiáng)的表達(dá)能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標(biāo)檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要7、計(jì)算機(jī)視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設(shè)要將一張低分辨率的衛(wèi)星圖像重建為高分辨率圖像,以下關(guān)于模型訓(xùn)練的挑戰(zhàn),哪一項(xiàng)是最為突出的?()A.缺乏足夠的高分辨率衛(wèi)星圖像數(shù)據(jù)用于訓(xùn)練B.模型的訓(xùn)練時間過長,難以在短時間內(nèi)得到結(jié)果C.難以評估重建后的圖像質(zhì)量,沒有明確的標(biāo)準(zhǔn)D.計(jì)算資源需求過大,普通計(jì)算機(jī)難以承受8、計(jì)算機(jī)視覺中的車牌識別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個高速公路收費(fèi)站實(shí)現(xiàn)準(zhǔn)確的車牌識別,以下關(guān)于車牌識別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強(qiáng)的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識別出字符,但對車牌的傾斜和光照不均敏感C.車牌識別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運(yùn)行D.車牌識別的準(zhǔn)確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關(guān)9、在計(jì)算機(jī)視覺中,目標(biāo)檢測是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含多種物體的圖像中準(zhǔn)確檢測出汽車的位置和類別。以下關(guān)于目標(biāo)檢測算法的描述,正確的是:()A.傳統(tǒng)的基于特征提取和分類器的方法在復(fù)雜場景下檢測效果優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的FasterR-CNN算法通過生成候選區(qū)域和分類回歸,能夠?qū)崿F(xiàn)高精度的目標(biāo)檢測C.目標(biāo)檢測算法只關(guān)注物體的外觀特征,不考慮物體之間的空間關(guān)系D.所有的目標(biāo)檢測算法對于小目標(biāo)的檢測都具有同樣出色的性能10、計(jì)算機(jī)視覺中的圖像修復(fù)旨在恢復(fù)圖像中缺失或損壞的部分。假設(shè)一張珍貴的老照片有部分區(qū)域損壞,需要進(jìn)行修復(fù)以還原其完整的內(nèi)容。以下哪種圖像修復(fù)方法在處理這種情況時能夠生成更自然和逼真的結(jié)果?()A.基于擴(kuò)散的圖像修復(fù)B.基于紋理合成的圖像修復(fù)C.基于深度學(xué)習(xí)的圖像修復(fù)D.基于樣例的圖像修復(fù)11、在計(jì)算機(jī)視覺的視頻分析中,需要處理連續(xù)的圖像幀。假設(shè)要分析一段監(jiān)控視頻中的人員行為,以下關(guān)于視頻分析方法的描述,哪一項(xiàng)是不正確的?()A.光流法可以用于計(jì)算相鄰幀之間的像素運(yùn)動,從而跟蹤物體的運(yùn)動軌跡B.可以通過對視頻幀進(jìn)行分類和檢測,來識別和分析人員的行為模式C.視頻分析需要考慮時間維度上的信息,不僅僅是單個圖像幀的特征D.視頻分析只適用于簡單的場景和行為,對于復(fù)雜的多人交互場景無法進(jìn)行有效的分析12、計(jì)算機(jī)視覺在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中有重要作用。假設(shè)要在VR環(huán)境中實(shí)現(xiàn)真實(shí)感的物體交互,以下哪種技術(shù)可能對準(zhǔn)確感知物體的位置和姿態(tài)至關(guān)重要?()A.立體視覺B.光場成像C.結(jié)構(gòu)光D.運(yùn)動捕捉13、計(jì)算機(jī)視覺在工業(yè)檢測中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測中的計(jì)算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以使用機(jī)器視覺系統(tǒng)對零件進(jìn)行實(shí)時檢測,快速發(fā)現(xiàn)缺陷B.深度學(xué)習(xí)模型能夠自動學(xué)習(xí)正常零件和缺陷零件的特征差異,實(shí)現(xiàn)準(zhǔn)確的缺陷檢測C.工業(yè)檢測中的計(jì)算機(jī)視覺系統(tǒng)需要具備高度的準(zhǔn)確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計(jì)算機(jī)視覺在工業(yè)檢測中只能檢測外觀缺陷,對于零件的內(nèi)部結(jié)構(gòu)和性能無法進(jìn)行評估14、計(jì)算機(jī)視覺在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助實(shí)現(xiàn)精準(zhǔn)農(nóng)業(yè)。假設(shè)一個農(nóng)場需要通過計(jì)算機(jī)視覺監(jiān)測農(nóng)作物的生長狀況。以下關(guān)于計(jì)算機(jī)視覺在農(nóng)業(yè)中的描述,哪一項(xiàng)是錯誤的?()A.可以檢測農(nóng)作物的病蟲害,及時采取防治措施B.能夠評估農(nóng)作物的生長階段和成熟度,指導(dǎo)收獲時間C.計(jì)算機(jī)視覺在農(nóng)業(yè)中的應(yīng)用完全不受天氣和光照條件的影響D.可以通過無人機(jī)搭載攝像頭進(jìn)行大面積的農(nóng)田監(jiān)測15、計(jì)算機(jī)視覺中的圖像超分辨率技術(shù)用于提高圖像的分辨率。假設(shè)要將一張低分辨率的圖像恢復(fù)成高分辨率圖像,以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學(xué)習(xí)中的生成對抗網(wǎng)絡(luò)(GAN)在圖像超分辨率任務(wù)中無法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質(zhì)量和內(nèi)容的限制D.結(jié)合先驗(yàn)知識和深度學(xué)習(xí)的方法可以改善圖像超分辨率的效果16、對于圖像的語義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對圖像進(jìn)行簡單的分類,不進(jìn)行深入的語義分析D.隨機(jī)猜測圖像的語義17、視頻理解是計(jì)算機(jī)視覺中的一個具有挑戰(zhàn)性的任務(wù)。以下關(guān)于視頻理解的敘述,不準(zhǔn)確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短期記憶網(wǎng)絡(luò)(LSTM)在處理視頻序列數(shù)據(jù)時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應(yīng)用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復(fù)雜場景下的視頻內(nèi)容,不存在任何挑戰(zhàn)18、計(jì)算機(jī)視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定目標(biāo)。假設(shè)要跟蹤一個在復(fù)雜場景中運(yùn)動的人物,以下關(guān)于目標(biāo)跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準(zhǔn)確預(yù)測目標(biāo)的運(yùn)動軌跡,但對目標(biāo)外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計(jì)算復(fù)雜度低,適用于實(shí)時跟蹤要求高的場景C.基于深度學(xué)習(xí)的跟蹤算法需要大量的訓(xùn)練數(shù)據(jù),并且在目標(biāo)被遮擋時容易丟失D.目標(biāo)跟蹤算法只要在初始幀中準(zhǔn)確檢測到目標(biāo),就能夠在后續(xù)幀中一直保持跟蹤的準(zhǔn)確性19、圖像增強(qiáng)是為了改善圖像的質(zhì)量和視覺效果。假設(shè)我們有一張由于光照不足而顯得暗淡的圖像,需要對其進(jìn)行增強(qiáng)以突出細(xì)節(jié)。以下哪種圖像增強(qiáng)方法可以有效地提高圖像的對比度,同時避免過度增強(qiáng)導(dǎo)致的噪聲放大?()A.直方圖均衡化B.灰度變換C.銳化濾波D.中值濾波20、圖像檢索是計(jì)算機(jī)視覺的一個重要應(yīng)用。假設(shè)我們要在一個大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像,以下哪種圖像表示方法可能對提高檢索效率有幫助?()A.全局特征表示B.局部特征表示C.基于深度學(xué)習(xí)的特征表示D.基于顏色直方圖的特征表示21、在計(jì)算機(jī)視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是22、在計(jì)算機(jī)視覺的自動駕駛應(yīng)用中,車輛需要準(zhǔn)確識別道路標(biāo)志、交通信號燈和其他車輛的狀態(tài)。對于實(shí)時性和準(zhǔn)確性要求極高的場景,以下哪種傳感器融合技術(shù)能夠?yàn)檐囕v提供更全面和可靠的環(huán)境感知?()A.攝像頭與激光雷達(dá)的融合B.毫米波雷達(dá)與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是23、對于圖像的超分辨率重建任務(wù),假設(shè)要將一張低分辨率的圖像恢復(fù)為高分辨率圖像,同時保留圖像的細(xì)節(jié)和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時可能表現(xiàn)更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學(xué)習(xí)的超分辨率重建模型,如SRCNNC.對低分辨率圖像進(jìn)行簡單的銳化處理D.不進(jìn)行任何處理,直接使用低分辨率圖像24、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要在一段視頻中持續(xù)跟蹤一個移動的物體,例如跟蹤一只飛行的鳥。物體可能會被其他物體遮擋,并且外觀可能會發(fā)生變化。以下哪種目標(biāo)跟蹤方法在這種復(fù)雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預(yù)測物體的位置和速度B.基于深度學(xué)習(xí)的Siamese網(wǎng)絡(luò)跟蹤方法C.只在視頻的起始幀確定目標(biāo)位置,后續(xù)幀不再跟蹤D.隨機(jī)選擇視頻中的區(qū)域作為跟蹤目標(biāo)25、計(jì)算機(jī)視覺中的光流計(jì)算用于估計(jì)圖像中像素的運(yùn)動。假設(shè)要分析一段視頻中物體的運(yùn)動速度和方向。以下關(guān)于光流計(jì)算的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過比較連續(xù)幀之間的像素差異來計(jì)算光流B.光流計(jì)算能夠?yàn)橐曨l中的目標(biāo)跟蹤和行為分析提供重要信息C.無論視頻的幀率和分辨率如何,光流計(jì)算都能準(zhǔn)確地估計(jì)像素運(yùn)動D.深度學(xué)習(xí)方法也被應(yīng)用于光流計(jì)算,提高了計(jì)算的準(zhǔn)確性和效率26、在計(jì)算機(jī)視覺的三維重建中,從多幅二維圖像恢復(fù)物體的三維結(jié)構(gòu)。假設(shè)要對一個古建筑進(jìn)行三維重建,以下關(guān)于三維重建方法的描述,哪一項(xiàng)是不正確的?()A.基于立體視覺的方法通過匹配不同視角下的圖像特征點(diǎn)來計(jì)算深度信息,實(shí)現(xiàn)三維重建B.運(yùn)動恢復(fù)結(jié)構(gòu)(SfM)算法可以從一系列無序的圖像中重建場景的三維結(jié)構(gòu)C.激光掃描技術(shù)能夠直接獲取物體表面的三維點(diǎn)云數(shù)據(jù),是一種高精度的三維重建方法D.三維重建的結(jié)果只取決于輸入的圖像質(zhì)量,與重建算法的選擇無關(guān)27、在計(jì)算機(jī)視覺中,三維重建是從二維圖像恢復(fù)物體的三維結(jié)構(gòu)。以下關(guān)于三維重建的敘述,不正確的是()A.可以通過多視圖幾何、結(jié)構(gòu)光或深度學(xué)習(xí)方法進(jìn)行三維重建B.三維重建在虛擬現(xiàn)實(shí)、文物保護(hù)和工業(yè)設(shè)計(jì)等領(lǐng)域有著廣泛的應(yīng)用C.三維重建的結(jié)果總是精確無誤的,能夠完全還原物體的真實(shí)三維結(jié)構(gòu)D.噪聲、遮擋和圖像質(zhì)量等因素會對三維重建的結(jié)果產(chǎn)生影響28、在計(jì)算機(jī)視覺的圖像風(fēng)格遷移任務(wù)中,將一張圖像的風(fēng)格應(yīng)用到另一張圖像上。假設(shè)要將一幅油畫的風(fēng)格遷移到一張照片上,以下關(guān)于圖像風(fēng)格遷移方法的描述,正確的是:()A.基于手工特征提取和風(fēng)格轉(zhuǎn)換的方法能夠?qū)崿F(xiàn)自然逼真的風(fēng)格遷移B.深度學(xué)習(xí)中的生成對抗網(wǎng)絡(luò)(GAN)在風(fēng)格遷移中無法生成多樣化的風(fēng)格效果C.圖像的內(nèi)容和風(fēng)格可以完全獨(dú)立地進(jìn)行處理,互不影響D.考慮圖像的局部和全局特征以及語義信息能夠提升風(fēng)格遷移的質(zhì)量29、計(jì)算機(jī)視覺中的深度估計(jì)是確定場景中物體距離相機(jī)的遠(yuǎn)近。假設(shè)要為機(jī)器人導(dǎo)航提供深度信息,以下關(guān)于深度估計(jì)方法的精度要求,哪一項(xiàng)是最為關(guān)鍵的?()A.能夠區(qū)分不同物體的大致距離范圍即可B.提供精確到毫米級別的深度信息,確保機(jī)器人安全導(dǎo)航C.深度估計(jì)的精度對機(jī)器人導(dǎo)航影響不大,可以忽略D.精度要求取決于機(jī)器人的運(yùn)動速度,速度越快要求精度越低30、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)圖像。假設(shè)要從一個大型的圖像庫中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項(xiàng)是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論