




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江西省南康區(qū)2024-2025學(xué)年初三下學(xué)期期初學(xué)情調(diào)研考試數(shù)學(xué)試題試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.股市有風(fēng)險,投資需謹(jǐn)慎.截至今年五月底,我國股市開戶總數(shù)約95000000,正向1億挺進,95000000用科學(xué)計數(shù)法表示為()A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×1092.下列等式從左到右的變形,屬于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x D.4my-2=2(2my-1)3.下列各式中正確的是()A.9=±3B.(-3)2=﹣3C.394.如圖,已知E,B,F(xiàn),C四點在一條直線上,,,添加以下條件之一,仍不能證明≌的是A. B. C. D.5.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.6.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標(biāo)為(,4),則△AOC的面積為A.12 B.9 C.6 D.47.已知A樣本的數(shù)據(jù)如下:72,73,76,76,77,78,78,78,B樣本的數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應(yīng)相同的是()A.平均數(shù) B.標(biāo)準(zhǔn)差 C.中位數(shù) D.眾數(shù)8.已知等邊三角形的內(nèi)切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:39.下列運算中正確的是()A.x2÷x8=x?6 B.a(chǎn)·a2=a2 C.(a2)3=a5 D.(3a)3=9a310.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.11.點P(4,﹣3)關(guān)于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限12.下列計算正確的是A.a(chǎn)2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.股市規(guī)定:股票每天的漲、跌幅均不超過10%,即當(dāng)漲了原價的10%后,便不能再漲,叫做漲停;當(dāng)?shù)嗽瓋r的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時間又漲回到原價,若這兩天此股票股價的平均增長率為x,則x滿足的方程是_____.14.小剛家、公交車站、學(xué)校在一條筆直的公路旁(小剛家、學(xué)校到這條公路的距離忽略不計).一天,小剛從家出發(fā)去上學(xué),沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學(xué)校(上、下車時間忽略不計),小剛與學(xué)校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達學(xué)校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.15.飛機著陸后滑行的距離y(單位:m)關(guān)于滑行時間t(單位:s)的函數(shù)解析式是y=60t﹣.在飛機著陸滑行中,最后4s滑行的距離是_____m.16.因式分解:______.17.計算:(+)=_____.18.2017我市社會消費品零售總額,科學(xué)記數(shù)法表示為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)定義:若某拋物線上有兩點A、B關(guān)于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:(1)試判斷ac的符號;(2)若c=-1,該二次函數(shù)圖象與y軸交于點C,且S△ABC=1.①求a的值;②當(dāng)該二次函數(shù)圖象與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.20.(6分)有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字1和1.B布袋中有三個完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣1和﹣2.小明從A布袋中隨機取出一個小球,記錄其標(biāo)有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點Q的一個坐標(biāo)為(x,y).(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標(biāo);(1)求點Q落在直線y=﹣x﹣1上的概率.21.(6分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設(shè)此交點與點C的距離為d,直接寫出d的取值范圍.22.(8分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當(dāng)CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉(zhuǎn)過程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說明理由;②連接AP,當(dāng)AP最大時,求AD′的值.(結(jié)果保留根號)23.(8分)列方程或方程組解應(yīng)用題:去年暑期,某地由于暴雨導(dǎo)致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結(jié)果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.24.(10分)解不等式組:,并把解集在數(shù)軸上表示出來.25.(10分)拋物線:與軸交于,兩點(點在點左側(cè)),拋物線的頂點為.(1)拋物線的對稱軸是直線________;(2)當(dāng)時,求拋物線的函數(shù)表達式;(3)在(2)的條件下,直線:經(jīng)過拋物線的頂點,直線與拋物線有兩個公共點,它們的橫坐標(biāo)分別記為,,直線與直線的交點的橫坐標(biāo)記為,若當(dāng)時,總有,請結(jié)合函數(shù)的圖象,直接寫出的取值范圍.26.(12分)如圖,過點A(2,0)的兩條直線,分別交y軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.求點B的坐標(biāo);若△ABC的面積為4,求的解析式.27.(12分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當(dāng)△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當(dāng)△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當(dāng)△ABO是任意三角形時,設(shè)∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關(guān)系?②結(jié)論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:15000000=1.5×2.故選B.考點:科學(xué)記數(shù)法—表示較大的數(shù)2、D【解析】
根據(jù)因式分解是把一個多項式轉(zhuǎn)化成幾個整式積的形式,可得答案.【詳解】解:A、是整式的乘法,故A不符合題意;
B、沒把一個多項式轉(zhuǎn)化成幾個整式積的形式,故B不符合題意;
C、沒把一個多項式轉(zhuǎn)化成幾個整式積的形式,故C不符合題意;
D、把一個多項式轉(zhuǎn)化成幾個整式積的形式,故D符合題意;
故選D.本題考查了因式分解的意義,因式分解是把一個多項式轉(zhuǎn)化成幾個整式積的形式.3、D【解析】
原式利用平方根、立方根定義計算即可求出值.【詳解】解:A、原式=3,不符合題意;B、原式=|-3|=3,不符合題意;C、原式不能化簡,不符合題意;D、原式=23-3=3,符合題意,故選:D.此題考查了立方根,以及算術(shù)平方根,熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.4、B【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】添加,根據(jù)AAS能證明≌,故A選項不符合題意.B.添加與原條件滿足SSA,不能證明≌,故B選項符合題意;C.添加,可得,根據(jù)AAS能證明≌,故C選項不符合題意;D.添加,可得,根據(jù)AAS能證明≌,故D選項不符合題意,故選B.本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.5、B【解析】
首先證明△ABF≌△DEA得到BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.6、B【解析】∵點,是中點∴點坐標(biāo)∵在雙曲線上,代入可得∴∵點在直角邊上,而直線邊與軸垂直∴點的橫坐標(biāo)為-6又∵點在雙曲線∴點坐標(biāo)為∴從而,故選B7、B【解析】試題分析:根據(jù)樣本A,B中數(shù)據(jù)之間的關(guān)系,結(jié)合眾數(shù),平均數(shù),中位數(shù)和標(biāo)準(zhǔn)差的定義即可得到結(jié)論:設(shè)樣本A中的數(shù)據(jù)為xi,則樣本B中的數(shù)據(jù)為yi=xi+2,則樣本數(shù)據(jù)B中的眾數(shù)和平均數(shù)以及中位數(shù)和A中的眾數(shù),平均數(shù),中位數(shù)相差2,只有標(biāo)準(zhǔn)差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.8、D【解析】試題分析:圖中內(nèi)切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內(nèi)切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.9、A【解析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘進行計算即可.【詳解】解:A、x2÷x8=x-6,故該選項正確;
B、a?a2=a3,故該選項錯誤;
C、(a2)3=a6,故該選項錯誤;
D、(3a)3=27a3,故該選項錯誤;
故選A.此題主要考查了同底數(shù)冪的乘除法、冪的乘方和積的乘方,關(guān)鍵是掌握相關(guān)運算法則.10、D【解析】
根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關(guān)鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.11、C【解析】
由題意得點P的坐標(biāo)為(﹣4,3),根據(jù)象限內(nèi)點的符號特點可得點P1的所在象限.【詳解】∵設(shè)P(4,﹣3)關(guān)于原點的對稱點是點P1,∴點P1的坐標(biāo)為(﹣4,3),∴點P1在第二象限.故選C本題主要考查了兩點關(guān)于原點對稱,這兩點的橫縱坐標(biāo)均互為相反數(shù);符號為(﹣,+)的點在第二象限.12、B【解析】【分析】根據(jù)同底數(shù)冪乘法、冪的乘方、合并同類項法則、完全平方公式逐項進行計算即可得.【詳解】A.a2·a2=a4,故A選項錯誤;B.(-a2)3=-a6,正確;C.3a2-6a2=-3a2,故C選項錯誤;D.(a-2)2=a2-4a+4,故D選項錯誤,故選B.【點睛】本題考查了同底數(shù)冪的乘法、冪的乘方、合并同類項、完全平方公式,熟練掌握各運算的運算法則是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
股票一次跌停就跌到原來價格的90%,再從90%的基礎(chǔ)上漲到原來的價格,且漲幅只能≤10%,設(shè)這兩天此股票股價的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【詳解】設(shè)這兩天此股票股價的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.本題主要考查了由實際問題抽象出一元二次方程,關(guān)鍵是掌握平均變化率的方法,若設(shè)變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關(guān)系為14、①②③【解析】
由公交車在7至12分鐘時間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學(xué)校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學(xué)校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.本題考查了一次函數(shù)的應(yīng)用.15、24【解析】
先利用二次函數(shù)的性質(zhì)求出飛機滑行20s停止,此時滑行距離為600m,然后再將t=20-4=16代入求得16s時滑行的距離,即可求出最后4s滑行的距離.【詳解】y=60t﹣=(t-20)2+600,即飛機著陸后滑行20s時停止,滑行距離為600m,當(dāng)t=20-4=16時,y=576,600-576=24,即最后4s滑行的距離是24m,故答案為24.本題考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意,熟練應(yīng)用二次函數(shù)的性質(zhì)解決問題.16、【解析】
先提取公因式x,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1.故答案為:x(y+1)1.本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.17、1.【解析】
去括號后得到答案.【詳解】原式=×+×=2+1=1,故答案為1.本題主要考查了去括號的概念,解本題的要點在于二次根式的運算.18、1.88×1【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:科學(xué)記數(shù)法表示為1.88×1,故答案為:1.88×1.此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)ac<3;(3)①a=1;②m>或m<.【解析】
(1)設(shè)A
(p,q).則B
(-p,-q),把A、B坐標(biāo)代入解析式可得方程組即可得到結(jié)論;
(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據(jù)三角形的面積公式列方程即可得到結(jié)果;②由①可知:拋物線解析式為y=x3-3mx-1,根據(jù)M(-1,1)、N(3,4).得到這些MN的解析式y(tǒng)=x+(-1≤x≤3),聯(lián)立方程組得到x3-3mx-1=x+,故問題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個解,建立新的二次函數(shù):y=x3-(3m+)x-,根據(jù)題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結(jié)論.【詳解】(1)設(shè)A
(p,q).則B
(-p,-q),
把A、B坐標(biāo)代入解析式可得:,
∴3ap3+3c=3.即p3=?,
∴?≥3,
∵ac≠3,
∴?>3,
∴ac<3;
(3)∵c=-1,
∴p3=,a>3,且C(3,-1),
∴p=±,
①S△ABC=×3×1=1,
∴a=1;
②由①可知:拋物線解析式為y=x3-3mx-1,
∵M(-1,1)、N(3,4).
∴MN:y=x+(-1≤x≤3),
依題,只需聯(lián)立在-1≤x≤3內(nèi)只有一個解即可,
∴x3-3mx-1=x+,
故問題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個解,
建立新的二次函數(shù):y=x3-(3m+)x-,
∵△=(3m+)3+11>3且c=-<3,
∴拋物線y=x3?(3m+)x?與x軸有兩個交點,且交y軸于負(fù)半軸.
不妨設(shè)方程x3?(3m+)x?=3的兩根分別為x1,x3.(x1<x3)
則x1+x3=3m+,x1x3=?
∵方程x3?(3m+)x?=3在-1≤x≤3內(nèi)只有一個解.
故分兩種情況討論:
(Ⅰ)若-1≤x1<3且x3>3:則.即:,
可得:m>.
(Ⅱ)若x1<-1且-1<x3≤3:則.即:,
可得:m<,
綜上所述,m>或m<.本題考查了待定系數(shù)法求二次函數(shù)的解析式,一元二次方程根與系數(shù)的關(guān)系,三角形面積公式,正確的理解題意是解題的關(guān)鍵.20、(1)見解析;(1)【解析】試題分析:先用列表法寫出點Q的所有可能坐標(biāo),再根據(jù)概率公式求解即可.(1)由題意得
1
1
-1
(1,-1)
(1,-1)
-1
(1,-1)
(1,-1)
-2
(1,-2)
(1,-2)
(1)共有6種等可能情況,符合條件的有1種P(點Q在直線y=?x?1上)=.考點:概率公式點評:解題的關(guān)鍵是熟練掌握概率公式:概率=所求情況數(shù)與總情況數(shù)的比值.21、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】
(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結(jié)合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當(dāng)點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當(dāng)點B′在點D右邊時,半圓交直線CD于點D、B′.∴當(dāng)半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及切線的性質(zhì),解題的關(guān)鍵是:(2)利用相似三角形的性質(zhì)求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結(jié)合求出d的取值范圍.22、(1)當(dāng)CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】
(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質(zhì)得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉(zhuǎn)的性質(zhì),即可判斷出△ACD≌△BCE'即可得出結(jié)論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結(jié)論.【詳解】(1)當(dāng)CC'=時,四邊形MCND'是菱形.理由:由平移的性質(zhì)得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當(dāng)α≠180°時,由旋轉(zhuǎn)的性質(zhì)得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當(dāng)α=180°時,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關(guān)系得,AP<AC+CP,∴當(dāng)點A,C,P三點共線時,AP最大,如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(1)的關(guān)鍵是四邊形MCND'是平行四邊形,解(2)的關(guān)鍵是判斷出點A,C,P三點共線時,AP最大.23、吉普車的速度為30千米/時.【解析】
先設(shè)搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時,列出方程求出x的值,再進行檢驗,即可求出答案.【詳解】解:設(shè)搶修車的速度為x千米/時,則吉普車的速度為15x千米/時.由題意得:.解得,x=20經(jīng)檢驗,x=20是原方程的解,并且x=20,1.5x=30都符合題意.答:吉普車的速度為30千米/時.點評:本題難度中等,主要考查學(xué)生對分式方程實際應(yīng)用的綜合運用.為中考常見題型,要求學(xué)生牢固掌握.注意檢驗.24、則不等式組的解集是﹣1<x≤3,不等式組的解集在數(shù)軸上表示見解析.【解析】
先求出不等式組中每一個不等式的解集,再求出它們的公共部分就是不等式組的解集.【詳解】解不等式①得:x>﹣1,解不等式②得:x≤3,則不等式組的解集是:﹣1<x≤3,不等式組的解集在數(shù)軸上表示為:.本題考查了解一元一次不等式組,熟知確定解集的方法“同大取大,同小取小,大小小大中間找,大大小小無處找”是解題的關(guān)鍵.也考查了在數(shù)軸上表示不等式組的解集.25、(1);(2);(3)【解析】
(1)根據(jù)拋物線的函數(shù)表達式,利用二次函數(shù)的性質(zhì)即可找出拋物線的對稱軸;(2)根據(jù)拋物線的對稱軸及即可得出點、的坐標(biāo),根據(jù)點的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)表達式;(3)利用配方法求出拋物線頂點的坐標(biāo),依照題意畫出圖形,觀察圖形可得出,再利用一次函數(shù)圖象上點的坐標(biāo)特征可得出,結(jié)合的取值范圍即可得出的取值范圍.【詳解】(1)∵拋物線的表達式為,∴拋物線的對稱軸為直線.故答案為:.(2)∵拋物線的對稱軸為直線,,∴點的坐標(biāo)為,點的坐標(biāo)為.將代入,得:,解得:,∴拋物線的函數(shù)表達式為.(3)∵,∴點的坐標(biāo)為.∵直線y=n與直線的交點的橫坐標(biāo)記為,且當(dāng)時,總有,∴x2<x3<x1,∵x3>0,∴直線與軸的交點在下方,∴.∵直線:經(jīng)過拋物線的頂點,∴,∴.本題考查了二次函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 歷年北京市中招考試真題及解析
- 典型環(huán)形跑道行程題講解
- 高考英語形容詞用法專項突破題
- 高校學(xué)生創(chuàng)業(yè)項目實踐心得分享
- 廚師長崗位薪酬考核標(biāo)準(zhǔn)及實施細(xì)則
- 企業(yè)文化理念宣貫活動策劃
- 高中英語閱讀理解技巧
- 小學(xué)體育課教學(xué)資源建設(shè)方案
- 六年級語文閱讀教學(xué)設(shè)計
- 網(wǎng)絡(luò)直播籌備全流程操作手冊
- 建筑工程項目技術(shù)總結(jié)報告模板
- 鼠疫實驗室生物安全培訓(xùn)課件
- 信息系統(tǒng)審計手冊
- 【7歷第一次月考】安徽省六安市霍邱縣2024-2025學(xué)年部編版七年級上學(xué)期10月月考?xì)v史試卷
- 2025年西學(xué)中培訓(xùn)結(jié)業(yè)考試卷(有答案)
- 幼兒園教師資格準(zhǔn)入制度
- 男襯衫領(lǐng)的縫制工藝
- 拆除工程吊裝方案范本(3篇)
- 稅務(wù)稽查跟蹤管理辦法
- 2025校園師生矛盾糾紛排查化解工作機制方案
- 學(xué)校教室衛(wèi)生檢查標(biāo)準(zhǔn)及執(zhí)行細(xì)則
評論
0/150
提交評論