湖北省黃岡、襄陽市2024-2025學年高三第一次聯(lián)合調(diào)研考試數(shù)學試題含解析_第1頁
湖北省黃岡、襄陽市2024-2025學年高三第一次聯(lián)合調(diào)研考試數(shù)學試題含解析_第2頁
湖北省黃岡、襄陽市2024-2025學年高三第一次聯(lián)合調(diào)研考試數(shù)學試題含解析_第3頁
湖北省黃岡、襄陽市2024-2025學年高三第一次聯(lián)合調(diào)研考試數(shù)學試題含解析_第4頁
湖北省黃岡、襄陽市2024-2025學年高三第一次聯(lián)合調(diào)研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省黃岡、襄陽市2024-2025學年高三第一次聯(lián)合調(diào)研考試數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)()在復(fù)平面內(nèi)的對應(yīng)點在直線上,則等于()A. B. C. D.2.是正四面體的面內(nèi)一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則()A. B. C. D.3.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或54.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.6.在中,分別為所對的邊,若函數(shù)有極值點,則的范圍是()A. B.C. D.7.已知向量與向量平行,,且,則()A. B.C. D.8.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.69.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.410.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.11.使得的展開式中含有常數(shù)項的最小的n為()A. B. C. D.12.在中所對的邊分別是,若,則()A.37 B.13 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應(yīng)是:_____.14.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.15.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.16.已知集合,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標.18.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;(2)若,求的最大值.19.(12分)設(shè)函數(shù),其中是自然對數(shù)的底數(shù).(Ⅰ)若在上存在兩個極值點,求的取值范圍;(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線段的中點為,證明:.20.(12分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實數(shù)的取值范圍.21.(12分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.(1)求橢圓C的方程;(2)已知點N的坐標為(3,2),點P的坐標為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設(shè)直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關(guān)系式.22.(10分)設(shè)數(shù)列是等差數(shù)列,其前項和為,且,.(1)求數(shù)列的通項公式;(2)證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由題意得,可求得,再根據(jù)共軛復(fù)數(shù)的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.本題考查復(fù)數(shù)的幾何表示和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.2.B【解析】

設(shè)正四面體的棱長為,建立空間直角坐標系,求出各點的坐標,求出面的法向量,設(shè)的坐標,求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標的關(guān)系,進而求出正切值.【詳解】由題意設(shè)四面體的棱長為,設(shè)為的中點,以為坐標原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標系,則可得,,取的三等分點、如圖,則,,,,所以、、、、,由題意設(shè),,和都是等邊三角形,為的中點,,,,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,,可得,此時,則,.故選:B.考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題.3.B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.4.B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B本題考查了必要不充分條件的判定,考查了學生數(shù)學運算,邏輯推理能力,屬于基礎(chǔ)題.5.C【解析】

根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C本題主要考查了橢圓的定義運用以及構(gòu)造齊次式求橢圓的離心率的問題,屬于中檔題.6.D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數(shù)的極值.【方法點晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個不等實根,從而可得.7.B【解析】

設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個未知數(shù)的值,即可得出向量的坐標.【詳解】設(shè),且,,由得,即,①,由,②,所以,解得,因此,.故選:B.本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數(shù)量積的坐標運算,考查計算能力,屬于中等題.8.B【解析】

根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B本題考查正三棱柱側(cè)面積的計算以及三視圖的認識,關(guān)鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.9.C【解析】

方法一:設(shè),利用拋物線的定義判斷出是的中點,結(jié)合等腰三角形的性質(zhì)求得點的橫坐標,根據(jù)拋物線的定義求得,進而求得.方法二:設(shè)出兩點的橫坐標,由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設(shè)兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.10.A【解析】

根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.11.B【解析】二項式展開式的通項公式為,若展開式中有常數(shù)項,則,解得,當r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應(yīng)用.12.D【解析】

直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

根據(jù)程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應(yīng)是:1故答案為:1.本題考查了程序框圖,意在考查學生的計算能力和理解能力.14.【解析】

算法的功能是求的值,根據(jù)輸出的值,分別求出當時和當時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當時,,可得:,或(舍去);當時,,可得:(舍去).綜上的值為:.故答案為:.本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.15.②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.16.【解析】

解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,,.故答案為:.本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.【解析】

利用極坐標方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標為.本題考查極坐標方程與普通方程,參數(shù)方程與普通方程間的互化,考查學生的計算能力,是一道容易題.18.(1)(2)【解析】

(1)根據(jù)單調(diào)遞減可知導函數(shù)恒小于等于,采用參變分離的方法分離出,并將的部分構(gòu)造成新函數(shù),分析與最值之間的關(guān)系;(2)通過對的導函數(shù)分析,確定有唯一零點,則就是的極大值點也是最大值點,計算的值并利用進行化簡,從而確定.【詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調(diào)遞增,所以,所以.(2)當時,.則,令,則,所以在上單調(diào)遞減.由于,,所以存在滿足,即.當時,,;當時,,.所以在上單調(diào)遞增,在上單調(diào)遞減.所以,因為,所以,所以,所以.(1)求函數(shù)中字母的范圍時,常用的方法有兩種:參變分離法、分類討論法;(2)當導函數(shù)不易求零點時,需要將導函數(shù)中某些部分拿出作單獨分析,以便先確定導函數(shù)的單調(diào)性從而確定導函數(shù)的零點所在區(qū)間,再分析整個函數(shù)的單調(diào)性,最后確定出函數(shù)的最值.19.(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)依題意在上存在兩個極值點,等價于在有兩個不等實根,由參變分類可得,令,利用導數(shù)研究的單調(diào)性、極值,從而得到參數(shù)的取值范圍;(Ⅱ)由題解得,,要證成立,只需證:,即:,只需證:,設(shè),即證:,再分別證明,即可;【詳解】解:(Ⅰ)由題意可知,,在上存在兩個極值點,等價于在有兩個不等實根,由可得,,令,則,令,可得,當時,,所以在上單調(diào)遞減,且當時,單調(diào)遞增;當時,單調(diào)遞減;所以是的極大值也是最大值,又當,當大于0趨向與0,要使在有兩個根,則,所以的取值范圍為;(Ⅱ)由題解得,,要證成立,只需證:即:,只需證:設(shè),即證:要證,只需證:令,則在上為增函數(shù),即成立;要證,只需證明:令,則在上為減函數(shù),,即成立成立,所以成立.本題考查利用導數(shù)研究函數(shù)的單調(diào)性、極值,利用導數(shù)證明不等式,屬于難題;20.(1)見解析(2)【解析】

(1)分類討論的值,利用導數(shù)證明單調(diào)性即可;(2)利用導數(shù)分別得出,,時,的最小值,即可得出實數(shù)的取值范圍.【詳解】(1),.當即時,,,此時,在上單調(diào)遞增;當即時,時,,在上單調(diào)遞減;時,,在上單調(diào)遞增;當即時,,,此時,在上單調(diào)遞減;(2)當時,因為在上單調(diào)遞增,所以的最小值為,所以當時,在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因為,所以,.所以,所以.當時,在上單調(diào)遞減所以的最小值為因為,所以,所以,綜上,.本題主要考查了利用導數(shù)證明函數(shù)的單調(diào)性以及利用導數(shù)研究函數(shù)的存在性問題,屬于中檔

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論