




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
GlobalHydrogenReview2024
INTERNATIONALENERGYAGENCY
TheIEAexaminesthefullspectrum
ofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits
31membercountries,
13associationcountriesandbeyond.
Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.
IEAmembercountries:
AustraliaAustriaBelgiumCanada
CzechRepublicDenmarkEstonia
FinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLithuania
LuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugal
SlovakRepublicSpain
SwedenSwitzerlandRepublicofTürkiyeUnitedKingdomUnitedStates
TheEuropeanCommissionalsoparticipatesintheworkoftheIEA
IEAassociationcountries:
ArgentinaBrazilChinaEgyptIndiaIndonesiaKenya
MoroccoSenegalSingaporeSouthAfricaThailand
Ukraine
Revisedversion,October2024
Informationnoticefoundat:
/corrections
Source:IEA.
InternationalEnergyAgencyWebsite:
GlobalHydrogenReview2024
Abstract
Page|
PAGE
IEA.CCBY4.0.
Abstract
TheGlobalHydrogenReviewisanannualpublicationbytheInternationalEnergyAgencythattrackshydrogenproductionanddemandworldwide,aswellasprogressincriticalareassuchasinfrastructuredevelopment,trade,policy,regulation,investmentsandinnovation.
Thereportisanoutputofthe
CleanEnergyMinisterialHydrogenInitiative
andisintendedtoinformenergysectorstakeholdersonthestatusandfutureprospectsofhydrogen.Focusingonhydrogen’spotentialroleinmeetinginternationalenergyandclimategoals,theReviewaimstohelpdecisionmakersfine-tunestrategiestoattractinvestmentandfacilitatedeploymentofhydrogentechnologiesatthesametimeascreatingdemandforhydrogenandhydrogen-basedfuels.Itcomparesreal-worlddevelopmentswiththestatedambitionsofgovernmentandindustry.
Thisyear’sreporthasaspecialfocusonLatinAmericaandincludesanalysisonrecentdevelopmentsoflow-emissionshydrogenprojectsintheregionandhowtounlockdemandandmovetowardsprojectimplementation.Inaddition,thereportassessesindetailthegreenhousegasemissionsassociatedwithdifferenthydrogensupplychains.
GlobalHydrogenReview2024
Acknowledgements
Page|
PAGE
Acknowledgements,contributorsandcredits
TheGlobalHydrogenReviewwaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).ThestudywasdesignedanddirectedbyTimurGül,ChiefEnergyTechnologyOfficer.
UweRemme(HeadoftheHydrogenandAlternativeFuelsUnit)andJoseMiguelBermudezMenendezco-ordinatedtheanalysisandproductionofthereport.
TheprincipalIEAauthorsandcontributorswere(inalphabeticalorder):GiovanniAndrean(CCUSandgeospatialanalysis),SimonBennett(leadoninvestment),HeribBlanco(leadongreenhousegasesandpolicies;LatinAmerica),SaraBudinis(leadonCCUS),JonghoonChae(electricitygeneration),ElizabethConnelly(leadontransport),ChiaraDelmastro(leadonbuildings),StavroulaEvangelopoulou(productionanddatamanagement),MathildeFajardy(CCUS),AlexandreGouy(industry),RafaelMartinezGordon(buildings),ShaneMcDonagh(transport),MegumiKotani(policies),FrancescoPavan(leadonproductionandtrade),AmaliaPizarro(leadonLatinAmericaandinfrastructure;innovation),RichardSimon(leadonindustry)andDenizUgur(investment).
ThedevelopmentofthisreportbenefittedfromcontributionsprovidedbythefollowingIEAcolleagues:YasminaAbdelilah,AnaAlcaldeBáscones,LeonardoColina,IlkkaHannula,MartinKueppers,GabrielLeiva,QuentinMinier,PedroNinodeCarvalho,JenniferOrtizandMirkoUliano.
ValuablecommentsandfeedbackwereprovidedbyseniormanagementandothercolleagueswithintheIEA,inparticularLauraCozzi,KeisukeSadamori,TimGould,PaoloFrankl,DennisHesseling,AlessandroBlasi,andAraceliFernandezPales.
Withgreatappreciation,wethankJoergHusarandAlejandraBernalwhoprovidedessentialsupportintheengagementwithLatinAmericastakeholders.
LizzieSayereditedthemanuscriptwhileAnnaKalistaandPer-AndersWidellprovidedessentialsupportthroughouttheprocess.
IEA.CCBY4.0.
SpecialthanksgotoProf.DetlefStoltenandhisteamatJülichSystemsAnalysis,ForschungszentrumJülich(HeidiHeinrichs,DanielRosales,ChristophWinkler,BernhardWortmann)fortheirmodelanalysisonhydrogenproductioncostsandanalyticalinputonwaterstresslevels.
GlobalHydrogenReview2024
Acknowledgements
Page|
PAGE
ThanksalsototheIEACommunicationsandDigitalOfficefortheirhelpinproducingthereport,particularlytoJethroMullen,CurtisBrainard,PoeliBojorquez,JonCuster,AstridDumond,MerveErdil,LivGaunt,GraceGordon,ClaraValloisandWonjikYang.
TheworkbenefittedfromthefinancialsupportprovidedbytheGovernmentsofCanadaandJapan.ThefollowinggovernmentshavealsocontributedtothereportthroughtheirvoluntarycontributiontotheCEMHydrogenInitiative:Australia,Austria,Canada,Finland,Germany,theEuropeanCommission,theNetherlands,Norway,theUnitedKingdomandtheUnitedStates.
Specialthanksgotothefollowingorganisationsandinitiativesfortheirvaluablecontributions:AdvancedFuelCellsTCP,HydrogenCouncil,HydrogenTCP,andInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE).
IEA.CCBY4.0.
Peerreviewersprovidedessentialfeedbacktoimprovethequalityofthereport.Theyinclude:NawalYousifAlhanaee,MaryamMohammedAlshamsiandAbdallaTalalAlhammadi(MinistryofEnergyandInfrastructure,UnitedArabEmirates);Abdul'AzizAliyu(GHGTCP);LaurentAntoniandNoévanHulst(IPHE);FlorianAusfelder,ThomasHildandIsabelKundler(Dechema);EstebanBarrantesVásquez(MinistryofEnvironmentandEnergy,CostaRica);FabianBarrera,MatthiasDelteil,MatthiasDeutschandLeandroJanke(AgoraEnergiewende);HamedBashiri,RobBlack,CarolineCzach,KathrynGagnon,AmandeepGarcha,EllenHandyside,AmirHanifi,OshadaMendis,CassieShang,MargaretSkwara,PhilTomlinsonandNicholeWarkotsch(NaturalResourcesCanada);LionelBoillot(EUCleanHydrogenPartnership);DavidBolsmanandAlfredMosselaar(RVO,Netherlands);PaolaBrunetto(Enel);FitzgeraldCantero(OLADE);FlorimarCeballosandRocíoValero(HydrogenTCP);PingChen(DalianInstituteofChemicalPhysics);TudorConstantinescu(DGENER,EuropeanCommission);Anne-SophieCorbeau(CenteronGlobalEnergyPolicy,ColumbiaUniversity);LindaDempsey(CFIndustries);LuisDiazgranadosandWouterVanhoudt(Hinicio);RobertDickinson,StuartWalshandChanglongWang(MonashUniversity);JoeDoleschal-Ridnell,DorisFujiandShirleyOliveira(BP);RobertFischer(SWEA);TudorFlorea(MinistryofEcologicalTransition,France);AlexandruFloristean(Hy24);DanielFraile(HydrogenEurope);MatiasGarcía(MinistryofEnergy,Chile);EricC.Gaucher(LavoisierH2Ceoconsult);DolfGielen,CarolinaLopezRochaandSimonaSulikova(WorldBank);CelineLeGoazigo(WBCSD);JeffreyGoldmeerandKanikaTayal(GEVernova);MariaJoseGonzalezandMartínScarone(MinistryofIndustry,EnergyandMines,Uruguay);MarineGorner,JulianHoelzenandFrédériqueRigal(Airbus);PatrickGraichen(Independent);EmileHerben(Yara);StephanHerbstandKoichiNumata(Toyota);YoshinariHiki(ENEOS);KenjiIshizawa(IHICorporation);SteveJames(MinistryofBusiness,Innovation&Employment,NewZealand);NicolasJensen(TES);ConnorKerrandTJKirk(RockyMountainInstitute);IlhanKim(MinistryofTrade,
IEA.CCBY4.0.
IndustryandEnergy,Korea);YoshikazuKobayashi(TheInstituteofEnergyEconomics,Japan);LeifChristianKr?ger(ThyssenkruppNucera);ThomasKwan(SchneiderElectric);PierreLaboué(FranceHydrogène);MartinLambert(OxfordInstituteforEnergyStudies);WilcovanderLans(PortofRotterdamAuthority);FranciscoLaveron(Iberdrola);FranzLehnerandJanStelter(NOWGmbH);MichaelLeibrandt(FederalMinistryforEconomicAffairsandClimateAction,Germany);PaulLuccheseandJulieMougin(CEA);AlbertoDiLullo,AndreaDiStefanoandAndreaPisano(Eni);ConstanzaMeneses(H2LAC);MatteoMicheliandAndreaTriki(GermanEnergyAgency);SusanaMoreira(H2Global-HINT.Co);PatriciaNaccache(MinistryofMinesandEnergyofBrazil);MasashiNagai(Chiyoda);MotohikoNishimura(KawasakiHeavyIndustries);MaríaTeresaNonayDomingo(Enagás);ArielPérez(Hychico);CédricPhilibert(Independent);AndrewPurvis(WorldSteelAssociation);CarlaRobledoandDouweRoest(MinistryofEconomicAffairsandClimate,theNetherlands);AgustínRodríguezRiccio(Topsoe);XavierRousseau(Snam);SunitaSatyapal,JacobEnglander,MarcMelainaandNehaRustagi(DepartmentofEnergy,UnitedStates);SophieSauerteig(DepartmentforEnergySecurityandNetZero,UnitedKingdom);RobertSchouwenaar(Shell);GuillaumeDeSmedt(AirLiquide);MichaelSmith(DepartmentofClimateChange,Energy,theEnvironmentandWater,Australia);MatthijsSoede(DGR&I,EuropeanCommission);UrszulaSzalkowska(EcoEngineers);KenjiTakahashi(JERA);AndreiTchouvelev(ISO);DenisThomas(AccelerabyCummins);TatianaVilarinhoFranco(FortescueFutureIndustries);MarcelWeeda(TNO);JoeWilliams(GreenHydrogenOrganisation);JuanCamiloZapata(MinistryofMinesandEnergy,Colombia).
GlobalHydrogenReview2024
Tableofcontents
Page|
PAGE
Tableofcontents
Executivesummary 9
Recommendations 14
GlobalHydrogenReviewSummaryProgress 16
Chapter1.Introduction 17
Overview 17
TheCEMHydrogenInitiative 18
Chapter2.Hydrogendemand 20
Highlights 20
Overviewandoutlook 21
Refining 28
Industry 32
Transport 37
Buildings 53
Electricitygeneration 54
Chapter3.Hydrogenproduction 59
Highlights 59
Overviewandoutlook 60
Electrolysis 66
FossilfuelswithCCUS 78
Comparisonofdifferentproductionroutes 81
Emergingproductionroutes 94
Hydrogen-basedfuelsandfeedstock 99
Chapter4.Tradeandinfrastructure 104
Highlights 104
Overview 105
Statusandoutlookofhydrogentrade 105
Statusandoutlookofhydrogeninfrastructure 113
Chapter5.Investment,financeandinnovation 135
Highlights 135
Investmentinthehydrogensector 136
Innovationinhydrogentechnologies 150
Chapter6.Policies 163
Highlights 163
Overview 164
IEA.CCBY4.0.
Strategiesandtargets 166
IEA.CCBY4.0.
Demandcreation 172
Mitigationofinvestmentrisks 178
PromotionofRD&D,innovationandknowledge-sharing 190
Certification,standards,regulations 194
Chapter7.GHGemissionsofhydrogenanditsderivatives 203
Highlights 203
Overview 204
Systemboundariesandscopeofemissions 206
Emissionsintensitiesofhydrogenproductionroutes 208
Emissionsintensitiesofammoniaproductionroutes 215
Emissionsintensitiesof(re)conversionandshippingofhydrogencarriers 216
Emissionsintensityofcarbon-containinghydrogen-basedfuels 223
EffectoftemporalcorrelationonGHGemissions 230
Chapter8.LatinAmericainfocus 234
Highlights 234
Unlockingthepotentialoflow-emissionshydrogeninLatinAmericaandtheCaribbean 235
Overview 237
Low-emissionshydrogenproduction 242
Low-emissionshydrogendemand 247
Movingtowardsimplementation 269
Annex 287
Explanatorynotes 287
Abbreviationsandacronyms 289
GlobalHydrogenReview2024
Executivesummary
Page|
PAGE
Executivesummary
Moreprojectsandmorefinalinvestmentdecisions,butsetbackspersist
Globalhydrogendemandreached97Mtin2023,anincreaseof2.5%comparedto2022.Demandremainsconcentratedinrefiningandthechemicalsector,andisprincipallycoveredbyhydrogenproducedfromunabatedfossilfuels.Asinpreviousyears,low-emissionshydrogenplayedonlyamarginalrole,withproductionoflessthan1Mtin2023.However,low-emissionshydrogenproductioncouldreach49Mtpaby2030basedonannouncedprojects,almost30%morethanwhentheGlobalHydrogenReview2023wasreleased.Thisstronggrowthhasbeenmostlydrivenbyelectrolysisprojects,withannouncedelectrolysiscapacityamountingtoalmost520GW.Thenumberofprojectsthathavereachedafinalinvestmentdecision(FID)isalsogrowing:AnnouncedproductionthathastakenFIDdoubledcomparedwithlastyeartoreach3.4Mtpa,representingafivefoldincreaseontoday’sproductionby2030.Thisissplitroughlyevenlybetweenelectrolysis(1.9Mtpa)andfossilfuelswithcarboncapture,utilisationandstorage(CCUS)(1.5Mtpa).
HydrogenproductionfromfossilfuelswithCCUShasgainedgroundoverthepastyear–althoughthetotalpotentialproductionfromannouncedprojectsgrewonlymarginallycomparedwithlastyear,therewereseveralFIDsforpreviouslyannouncedlarge-scaleprojects,allofwhicharelocatedinNorthAmericaandEurope.Asaresult,thepotentialproductionin2030fromprojectsusingfossilfuelswithCCUSthathavetakenFIDmorethandoubledinthelastyear,from
0.6MtpainSeptember2023to1.5Mtpatoday.
IEA.CCBY4.0.
Overall,thisisnoteworthyprogressforanascentsector,butmostofthepotentialproductionisstillinplanningoratevenearlierstages.Forthefullprojectpipelinetomaterialise,thesectorwouldneedtogrowatanunprecedentedcompoundannualgrowthrateofover90%from2024until2030,wellabovethegrowthexperiencedbysolarPVduringitsfastestexpansionphases.Severalprojectshavefaceddelaysandcancellations,whichareputtingatriskasignificantpartoftheprojectpipeline.Themainreasonsincludeuncleardemandsignals,financinghurdles,delaystoincentives,regulatoryuncertainties,licensingandpermittingissuesandoperationalchallenges.
GlobalHydrogenReview2024
Executivesummary
Mapofannouncedlow-emissionshydrogenproductionprojects,2024
Source:IEA
HydrogenProjectsdatabase
(October2024).
Chinaandelectrolysers–thesequeltosolarPVandbatteries?
AnnouncedelectrolysercapacitythathasreachedFIDnowstandsat20GWglobally,ofwhich6.5GWreachedFIDoverthelast12monthsalone.Chinaisstrengtheningitsleadership,accountingformorethan40%ofglobalFIDsincapacitytermsoverthesameperiod.China’sfront-runningpositionisbackedbyitsstrengthinthemassmanufacturingofcleanenergytechnologies:itishometo60%ofglobalelectrolysermanufacturingcapacity.China’scontinuedexpansionofmanufacturingcapacityisexpectedtodrivedownelectrolysercosts,ashasoccurredwithsolarPVandbatterymanufacturinginthepast.Moreover,severallargeChinesemanufacturersofsolarpanelshaveenteredthebusinessofmanufacturingelectrolysers,andtodaytheyaccountforaroundone-thirdofChina’selectrolysermanufacturingcapacity.However,otherregionsarealsosteppingupefforts:inEurope,FIDsforelectrolysisprojectsquadrupledoverthelastyeartoreachmorethan2GW,whileIndiahasemergedasoneofthekeyplayersthankstoasingleFIDfor1.3GW.
IEA.CCBY4.0.
PAGE|10
GlobalHydrogenReview2024
Executivesummary
Technologyinnovationismakingheadway,withsignspointingtoacceleratedprogressinthenearterm
GovernmentinvestmentinhydrogentechnologyRD&Dhasbeengrowingsince2016,andthiseffortisstartingtobearfruit.Todate,progresshasoccurredmostlyonthesupplyside,andnumeroustechnologiesareeitheralreadycommerciallyavailableorclosetothispoint.Promisingresultsarealsobeingseenforend-usetechnologies,withseveralapplicationsinindustryandelectricitygenerationreachingdemonstrationstage,aswellassignificantprogressintransportapplications,particularlyintheshippingsector.Inaddition,thenumberofpatentapplicationsleaptup47%in2022,withmostofthegrowthcomingfromtechnologiesthatareprimarilymotivatedbyclimatechangeconcerns.IncreasedactivityaroundpatentingsuggeststhatadditionalpublicfundingforR&Dandgrowingconfidenceinfuturemarketopportunities,backedbysupportivepolicies,arestimulatingmorenewideasandproductdesignswithcommercialpotential.
Low-emissionshydrogenwillremainexpensiveintheshortterm,butcostsareexpectedtofallsignificantly
Low-emissionshydrogenisanemergingsectorand,assuch,thereisuncertaintyaboutcosts.Today’selectrolysercostshavebeenrevisedupwardsforthisreport,basedonnewlyavailabledatafrommoreadvancedprojects.Thefuturecostevolutionwilldependonnumerousfactors,suchastechnologydevelopment,andparticularlyonthelevelandpaceofdeployment.WiththedeploymentseenintheIEA’sNetZeroEmissionsby2050Scenario(NZEScenario),thecostoflow-emissionshydrogenproductionfromrenewableelectricityfallstoUSD2-9/kgH2by2030–halfoftoday’svalue–withthecostgapwithunabatedfossil-basedproductionshrinkingfromUSD1.5-8/kgH2todaytoUSD1-3/kgH2by2030.DeploymentlevelsintheStatedPoliciesScenario(whichconsidersexistingpoliciesonly)meanthatthecostrangewouldfallonlyaround30%.Asnaturalgaspricesfallinmanyregions,low-emissionshydrogenproductionfromnaturalgaswithCCUSisalsosettoexperiencecostreductions.
Costreductionswillbenefitallprojects,buttheimpactonthecompetitivenessofindividualprojectswillvary.Forexample,fulldevelopmentoftheentireelectrolyserprojectpipelineofalmost520GWwouldachievesimilarglobalcostreductionsasintheNZEScenario.InChina,globaldeploymentatsuchalevelwouldmeanthatthevastmajorityoftheproductionfromitscurrentelectrolyserprojectpipeline(1Mtpa)wouldbecheaperthanhydrogenproducedfromunabatedcoal.Globally,by2030,morethan5Mtpacouldbeproducedatacostcompetitivewithproductionfromunabatedfossilfuels,andupto12MtpawithacostpremiumofUSD1.5/kgH2.
IEA.CCBY4.0.
PAGE|11
GlobalHydrogenReview2024
Executivesummary
Thiscostgapwillremainanimportantchallengeintheshorttermforprojectdevelopers,butforfinalproductsforwhichhydrogenisanintermediatefeedstock,theimpactislikelytobemanageableinmanycases.Thecostpremiumoflow-emissionshydrogenproductiondecreasesalongthevaluechain,meaningthatconsumersoftenseeonlyamodestpriceincreaseinfinalproducts.Forexample,usingsteelproducedwithrenewablehydrogentodayintheproductionofelectricvehicles(EVs)wouldincreasethetotalpriceofanEVbyaround1%.
Progressisbeingmadeincreatingdemandforlow-emissionshydrogen,butthisstillneedstoscaleup
Effortstostimulatedemandforlow-emissionshydrogen(andhydrogen-basedfuels)arenowgainingtractionasgovernmentsbeginimplementingkeypolicies(suchasCarbonContractsforDifferenceinGermanyandtheEUmandatesinaviationandshipping).Thesemeasureshavealsotriggeredactionontheindustryside,withagrowingnumberofofftakeagreementssignedandthelaunchoftenderstopurchaselow-emissionshydrogen.However,theoverallscaleoftheseeffortsremainsinadequateforhydrogentocontributetomeetingclimategoals.
Policiesandtargetsforhydrogendemandsetbygovernmentsadduptoaround11Mtin2030,nearly3Mtlowerthanlastyearduetothedownwardrevisionsofsometargetsforhydrogenuseinindustry,transportandpowergeneration.Yettheamountoflow-emissionshydrogenproductionthathastakenFID(3.4Mtpa)orisalreadyoperational(0.7Mtpa),at4Mtpa,iswellbelowthatlevel.Thegapconstitutesacallforactiontoindustryandgovernmentstofacilitateofftakeagreementsthatcanhelpunlockinvestmentonthesupplyside.
Atthesametime,governmentpoliciesandtargetsfordemandarewellbehindtheproductiontargetsbygovernments(whichaddupto43Mtpain2030)andareevenlowerthanthepotentialsupplythatcouldbeachievedfromannouncedprojects(49Mtpa).Policymeasuresarestillinsufficienttocreatethelevelofdemandneededtoscaleupproductiontomeetgovernmentexpectations.Inaddition,somemoreambitiousactions(liketheEUtargetsinindustryapplicationsortherefiningquotasinIndia)havenotyetbeentranslatedintonationallegislation.Moreover,fromthearoundUSD100billionofpolicysupportforlow-emissionshydrogenadoptionannouncedbygovernmentsoverthepastyear,supportonthesupplysideis50%largerthanonthedemandside.Strongergovernmentactionwillbeneededtostimulatedemandforlow-emissionshydrogenasanessentialrequirementtounderpininvestmentsonthesupplyside.Industrialhubs,wherelow-emissionshydrogencouldreplacetheexistinglargedemandforhydrogenmettodaybyunabatedfossilfuels,remainanimportantuntappedopportunityforgovernmentstostimulatedemand.
IEA.CCBY4.0.
PAGE|12
GlobalHydrogenReview2024
Executivesummary
Thenextstepsforcertificationandmutualrecognition
Governmentsareacceleratingthedevelopmentofregulationsontheenvironmentalattributesoflow-emissionshydrogen,particularlyregardinggreenhousegas(GHG)emissions.Clearandpredictableregulationscanstrengthencertaintyforlong-terminvestments.Yettheseframeworks,andtheassociatedcertificationschemes,remainunalignedacrossdifferentregions,creatingpotentialformarketfragmentation.Inresponse,atCOP28,37governmentscommittedtomutualrecognitionofnationalcertificationschemes,whileLatinAmericalaunched“CertHiLAC”,aregionalcertificationframework.Inaddition,theInternationalOrganizationforStandardization(ISO)hasreleasedamethodologyfordeterminingGHGemissionsassociatedwithhydrogenproduction,transportandconversion/reconversion.Thiswillbethebasisforafullstandardexpectedby2025or2026,whichcouldserveasacommonmethodologytoenablethemutualrecognitionofcertificates.However,somequestionsrelatedtotheassessmentofGHGemissionsinhydrogensupplychainsremainunresolved,suchashowtoaccountforemissionsfromtheconstructionandmanufacturingofproductionassets.Inthecaseoffossil-basedproduction,thereisaneedforbetterdataonupstreamandmidstreamemissionsoffossilfuelsupplyavailableinnationalinventoriesinordertoensurerobustassessmentoftheGHGemissionsassociatedwiththeseproductionroutes.
HydrogencanbeanopportunityforLatinAmericainthenewenergyeconomy,butisfacingchallenges
Thisyear’sreportincludesaspecialfocusonLatinAmericaandtheCaribbean,followingthelaunchoftheIEA’sLatinAmericaEnergyOutlookin2023.LatinAmericaiswell-positionedtoemergeasamajorproduceroflow-emissionshydrogen,capitalisingonitsabundantnaturalandrenewableenergyresourcesandlargelydecarbonisedelectricitymix.Basedonannouncedprojects,by2030,LatinAmericacouldproducemorethan7Mtpaofhydrogenwithacarbonintensitybelow3kgCO2-eq/kgH2(3-4timeslowerthanusingunabatednaturalgas),inlinewiththerequirementsofseveralexistingregulationsaroundtheworld(e.g.theEUTaxonomy,Japan’sHydrogenSocietyPromotionActandtheUSCleanHydrogenProductionStandard).However,achievingthispotentialinfullwouldrequireasignificantincreaseinelectricitygenerationcapacity–equivalentto20%oftheregion’scurrentpoweroutput–andsubstantialinvestmentsinenablinginfrastructure,suchastransmissionlines.
ManyLatinAmericancountriesalreadyhavehydrogenstrategieswithastrongfocusonexportopportunities.However,theseplansmayneedtobeupdatedinlightofuncertaintyaboutthesizeoftheglobalhydrogenmarket.Atthegloballevel,therehasbeennogrowthinannouncedprojectslinkedtotradeofhydrogenandhydrogen-basedfuelsinthepastyear,suggestingthatprojectdevelopers
IEA.CCBY4.0.
PAGE|13
GlobalHydrogenReview2024
Executivesummary
haveinsteadfocusedondomesticopportunities.InthecaseofLatinAmerica,theseopportunitiesaremostlyinrefiningandammoniaproduction,whichofferimmediatelarge-scaleapplications.Inthecaseofammonia,developingdomesticproductioncapacitieswouldhelptoreduceimportdependencyforfertilisersinaregionwhereagriculturemakesasignificantcontributiontonationalgrossdomesticproduct.
Asthemarketdevelops,newapplicationsinsteel,shippingandaviationwillemerge,togetherwiththeestablishmentofhydrogenhubs.Thesehubscanopenanopportunitytoscaleuphydrogenuseandproductionfordomesticneeds,whilealsoprovidingtheopportunitytoexporthydrogen-basedfuels,aswellasmaterialsproducedwithlow-emissionshydrogen,suchashotbriquettediron,allowingcountriesthataretodaylargeexportersofironore,likeBrazil,todevelopnewindustrialcapacitiesandscaleupinthevaluechain.Aphasedapproachtosupplyintheregion,startingwithsmaller-scaleprojects,willhelpmitigaterisks,reducecapitalinvestment,andprovidevaluableexperienceforscalingupinthefuture.Infrastructureplanninganddevelopment,especiallyinlong-leadprojectslikepowertransmission,shouldbeginimmediatelytosupportfuturehydrogenproduction.
Recommendations
Acceleratedemandcreationforlow-emissionshydrogenbyleveragingindustrialhubsandpublicprocurement
Governmentsshouldtakebolderactiontostimulatedemandforlow-emissionshydrogen.Theimplementationofpoliciessuchasquotas,mandatesandcarboncontractsfordifferencehasalreadystarted,butremainslimitedingeographicalcoverageandscale.Governmentscancapitaliseontheopportunityofferedbyexistinghydrogenusersandhigh-valuesectorssuchassteel,shippingandaviation,whichareoftenco-locatedinindustrialhubs.Poolingdemandinthesehubscancreatescaleandreduceofftakerisksforproducers.Additionally,makinguseofpublicprocurementforfinalproductsthatconsumelow-emissionshydrogenintheirproduction,andencouragingthedevelopmentofmarketswhereconsumersare
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 駕駛院內(nèi)三輪車安全協(xié)議書5篇
- 護理高校操作考試題及答案
- 難點解析-人教版八年級上冊物理聲現(xiàn)象《聲音的產(chǎn)生與傳播》單元測評試卷(附答案詳解)
- 考點攻克蘇科版八年級物理下冊《力》專項訓練練習題(含答案詳解)
- 考點攻克人教版八年級物理《功和機械能》同步測評試卷(解析版含答案)
- 天津低壓電工證考試試題及答案
- 高等數(shù)學下考試題庫及答案
- 廣東工業(yè)大學安全考試題及答案
- 半天妖門店服務流程及各類事項知識多選試題附答案
- 2025年病歷管理制度與病歷書寫規(guī)范考試題(帶參考答案)
- 甲狀腺消融手術(shù)
- 2024年秋季新教材三年級上冊PEP英語教學課件:含視頻音頻U3-第1課時-A
- 公安涉警輿情課件
- 醫(yī)院培訓課件:《類風濕關(guān)節(jié)炎的治療與康復》
- DB34∕T 3790-2021 智慧藥房建設指南
- 實驗小學六年級上學期素養(yǎng)競賽語文試卷(有答案)
- 2024至2030年中國石晶地板行業(yè)市場調(diào)查研究及投資前景展望報告
- 景區(qū)標識標牌投標方案
- 2023年自考中國古代文學史試卷及答案
- T-CPQS C010-2024 鑒賞收藏用潮流玩偶及類似用途產(chǎn)品
- 一年級下冊美術(shù)教案 -第五課 由小變大的畫 ︳湘美版
評論
0/150
提交評論